Page 33 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 33

24   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                        Table 2.2 The parameters for GSO algorithm
                                                l 0  γ  β    n t s    ρ   r s  m  iter
                        Static parameter settings  5  0.6 0.08 5  0.001 0.4 0.5 50 2000000
                        Dynamic parameter settings 5  0.6 0.08 5  0.001 0.4 10  50 2000000

                        Table 2.3 The identification result of static parameters
                        Parameters        f c (Nm)    f s (Nm)   σ 2 (Nm s/rad)   ω s (rad/s)
                        True value        0.28        0.34       0.01             0.2
                        Estimate value    0.2736      0.3138     0.0097           0.2885


                           In (2.12), the static parameters σ 2, f c , f s,and ω s can be obtained by using
                        GSO algorithm based on the measurable data of the input torque T and the
                        output velocity ω. To simplify the notation, the following estimated vector
                        ˆ v m is defined

                                                    ˆ  ˆ          T
                                              ˆ v m =[ f c f s  ˆ σ 2  ˆ ω s  ] ,   (2.13)
                        where m = 1,2,...,M; M is the size of glowworms’ population, and ˆv m is a
                        set of estimated parameters represented by the m-th glowworm.
                           Then the estimation of the friction T f is obtained by


                                       ˆ i
                                              ˆ
                                      T    =[f c + (f s − f c )e −(ω i ˆω s ) 2  ]sgn(ω i ) +ˆσ 2 ω i  (2.14)
                                                  ˆ
                                                     ˆ
                                        f _m
                        where i = 1,2,...,N is the number of selected velocity signals, T ˆ i  denotes
                                                                               f _m
                        the estimation of friction torque corresponding to the i-th velocity signal
                        of the m-th glowworm.
                           The fitness function of the static parameters is chosen by
                                                N
                                              1     i  2
                                          J m =    (e s_m ) , m = 1,2,...,M         (2.15)
                                              2
                                                i=1
                                           ˆ i
                                      i
                        where e i s_m  = T f _m  − T f _m  represents the static identification error for the
                        i-th velocity signal of the m-th glowworm, and T i  represents the friction
                                                                   f _m
                        torque for the i-th velocity signal of the m-th glowworm.
                           Hence, identifying the optimal static parameters of LuGre model is
                        equivalent to minimization of the objective function J m. Following the
                        above mentioned implementation steps in Table 2.1 and parameters in Ta-
                        ble 2.2, we carried out numerical simulations. The identification result of
                        static parameters in the LuGre model is given in Table 2.3, and the Stribeck
                        curve is shown in Fig. 2.1, which shows very satisfactory performance.
   28   29   30   31   32   33   34   35   36   37   38