Page 38 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 38

Adaptive Sliding Mode Control of Non-linear Servo Systems With LuGre Friction Model  29


                               Please refer to [21] for a similar proof of the above Lemma.
                               According to Lemma 2.1, the parameter updating laws for each un-
                            known parameter can be given as


                                                    ˙
                                                                    ˜ σ
                                                            ˆ z
                                                    ˆ σ 0 =−k σ 0 0s − γ σ 0 0         (2.37)
                                                          |ω|
                                                  ˙
                                                                     ˜ σ
                                                  ˆ σ 1 = k σ 1  ˆ z 1s − γ σ 1 1      (2.38)
                                                         g(ω)
                                                     ˙
                                                     ˆ
                                                     ζ =−k ζ ωs − γ ζ ζ ˜              (2.39)
                                                      ˙
                                                            ˙
                                                      ˆ J =−k J δs − γ J J ˜           (2.40)
                                                     ˙
                                                                  ˜
                                                     ˆ
                                                    T d =−k T s − γ T T d              (2.41)
                                                                                  > 0, γ ζ > 0,
                            where k σ 0  > 0, k σ 1  > 0, k ζ > 0, k J > 0, k T > 0, γ σ 0  > 0, γ σ 1
                            γ J > 0, γ T > 0 are the constant tuning parameters involved in  .
                            2.4.3 Stability Analysis
                            Theorem 2.1. Considering system (2.1) with friction model (2.3)–(2.5), ob-
                            server (2.28) and control (2.29) with adaptive law (2.36), then the closed-loop
                            system is asymptotically stable and the tracking error converges to zero.


                            Proof. Define the following Lyapunov function

                                      1  2   1    2    1    2    1  2    1   2   1   2
                               V    = Js +     σ 0 ˜z +  σ 1 ˜z +  ˜ σ +    ˜ σ +   ζ ˜
                                                                             1
                                                            1
                                                                    0
                                                  0
                                      2     2k 0      2k 1     2k σ 0   2k σ 1  2k ζ
                                         1        1  2
                                            ˜ 2
                                      +     T +     ˜ J                                (2.42)
                                             d
                                        2k T d   2k J
                               Calculating the derivative of V,wehave
                                                       ˙
                                                                ˙
                                                                         ˙
                                             ˙
                                                                               ˜ ˜
                              ˙ V  = Js˙ +  1  σ 0 ˜z 0 ˜ z 0 +  1  σ 1 ˜z 1 ˜ z 1 +  1  ˜ σ 0 ˜σ 0 +  1  ˜ σ 1 ˜σ 1 +  1 ˙
                                    s
                                                                               ζζ
                                        k 0       k 1       k σ 0   k σ 1    k ζ
                                          ˙    1
                                      1 ˜ ˜     ˜˜
                                   +   T d T d + JJ
                                     k T       k J
                                      d
                                      2            |ω|     1    ˙    1    ˙            1 ˙
                                 =−ks + σ 0 ˜z 0s − σ 1  ˜ z 1s +  σ 0 ˜z 0 ˜ z 0 +  σ 1 ˜z 1 ˜ z 1 +˜σ 0 (ˆz 0s +  ˆ σ 0 )
                                                  g(ω)    k 0       k 1               k σ 0
                                                                            T d ) + ˜ J(δs + J)
                                                                    ˜
                                                       ˜
                                                                ˆ
                                   +˜σ 1 (  1 ˙ ˆ σ 1 −  |ω|  ˆ z 1s) + ζ(ωs +  1 ˙ ζ) + T d (s +  1 ˙ ˆ  1 ˙ ˆ
                                                                           d
                                        k σ 1  g(ω)           k ζ         k T           k J
                                                                                       (2.43)
   33   34   35   36   37   38   39   40   41   42   43