Page 16 - Advanced_Engineering_Mathematics o'neil
P. 16

x     Contents


                                       16.3  Wave Motion in an Infinite Medium  579
                                       16.4  Wave Motion in a Semi-Infinite Medium  585
                                           16.4.1  Solution by Fourier Sine or Cosine Transform  586
                                       16.5  Laplace Transform Techniques  587
                                       16.6  Characteristics and d’Alembert’s Solution  594
                                           16.6.1  Forward and Backward Waves  596
                                           16.6.2  Forced Wave Motion 599
                                       16.7  Vibrations in a Circular Membrane I  602
                                           16.7.1  Normal Modes of Vibration 604
                                       16.8  Vibrations in a Circular Membrane II  605
                                       16.9  Vibrations in a Rectangular Membrane  608

                        CHAPTER 17 The Heat Equation      611
                                       17.1  Initial and Boundary Conditions  611
                                       17.2  The Heat Equation on [0, L] 612
                                           17.2.1  Ends Kept at Temperature Zero 612
                                           17.2.2 Insulated Ends 614
                                           17.2.3 Radiating End  615
                                           17.2.4 Transformation of Problems  618
                                           17.2.5 The Heat Equation with a Source Term  619
                                           17.2.6 Effects of Boundary Conditions and Constants  622
                                       17.3 Solutions in an Infinite Medium  626
                                           17.3.1 Problems on the Real Line  626
                                           17.3.2 Solution by Fourier Transform  627
                                           17.3.3 Problems on the Half-Line  629
                                           17.3.4 Solution by Fourier Sine Transform  630
                                       17.4  Laplace Transform Techniques  631
                                       17.5  Heat Conduction in an Infinite Cylinder 636
                                       17.6  Heat Conduction in a Rectangular Plate 638

                        CHAPTER 18 The Potential Equation     641
                                       18.1  Laplace’s Equation 641
                                       18.2  Dirichlet Problem for a Rectangle 642
                                       18.3  Dirichlet Problem for a Disk 645
                                       18.4 Poisson’s Integral Formula  648
                                       18.5  Dirichlet Problem for Unbounded Regions  649
                                           18.5.1  The Upper Half-Plane 650
                                           18.5.2  The Right Quarter-Plane 652
                                       18.6  A Dirichlet Problem for a Cube  654
                                       18.7 Steady-State Equation for a Sphere  655
                                       18.8 The Neumann Problem 659
                                           18.8.1  A Neumann Problem for a Rectangle 660
                                           18.8.2  A Neumann Problem for a Disk  662
                                           18.8.3  A Neumann Problem for the Upper Half-Plane 664









                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                    October 15, 2010  17:43   THM/NEIL    Page-x         27410_00_fm_pi-xiv
   11   12   13   14   15   16   17   18   19   20   21