Page 739 - Advanced_Engineering_Mathematics o'neil
P. 739
21.1 Power Series 719
D
z 0
FIGURE 21.1 γ in the proof of Theorem 21.3.
Let γ be the circle of radius r about z 0 (Figure 21.1), so γ has a center at z 0 and encloses z.By
the Cauchy integral formula,
1 f (w)
f (z) = dw.
2πi γ w − z
An algebraic manipulation allows us to write
1 1 1 1
= = .
w − z w − z 0 − (z − z 0 ) w − z 0 1 − z−z 0
w−z 0
Now
z − z 0
< 1,
w − z 0
so we can write the convergent geometric series
n
1 z − z 0
∞
=
w − z w − z 0
n=0
∞
1
n
= (z − z 0 ) .
(w − z 0 ) n+1
n=0
Then
∞
f (w) f (w)
n
= (z − z 0 ) .
w − z (w − z 0 ) n+1
n=0
It can be shown that this series can be integrated term by term, so
1 f (w)
f (z) = dw
2πi γ w − z
∞
1 f (w) n
= (z − z 0 ) dw
2πi C (w − z 0 ) n+1
n=0
∞
1 f (w) n
= dw (z − z 0 )
2πi γ (w − z 0 ) n+1
n=0
∞ n
f (z 0 ) n
= (z − z 0 ) .
n!
n=0
At the last line, we used the Cauchy representation formula for higher derivatives.
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 15:35 THM/NEIL Page-719 27410_21_ch21_p715-728

