Page 744 - Advanced_Engineering_Mathematics o'neil
P. 744

724    CHAPTER 21  Series Representations of Functions



                         EXAMPLE 21.6
                                                                       3
                                                                    cos (z)
                                                                   (z − π/2) 2
                                 has a zero of order 1 at π/2, because the numerator has a zero of order of 3 there, and the
                                 denominator has a zero of order 2.





                        SECTION 21.1        PROBLEMS


                     In each of Problems 1 through 6, find the radius of con-  (a) First, compute the Taylor coefficients at 0.
                     vergence and open disk of convergence of the power  (b) Find the first seven terms of the product of the
                     series.                                              Maclaurin series for sin(z) with itself.
                                                                                 2
                                                                       (c) Write sin (z) in terms of the exponential func-
                       ∞   n + 1
                     1.       (z + 3i) n                                  tion and use the Maclaurin expansion of this
                       n=0 2 n                                            function.
                                                                                 2
                                                                      (d) Write sin (z) = (1 − cos(2z))/2, and use the
                                 1
                     2.  (−1) n      (z − i) 2n                           Maclaurin expansion of cos(z).
                       ∞
                       n=0    (2n + 1) 2
                            n n                                    17. Show that
                       ∞
                     3.         (z − 1 + 3i) n
                       n=0 (n + 1) n                                           ∞
                                                                                   1    1   2π

                                 n                                                            e 2z cos(θ) dθ.
                            2i                                                      2
                                                                                      =
                     4.          (z + 3 − 4i) n                                n=0  (n!)  2π  0
                       ∞
                       n=0 5 + i
                       ∞   i  n                                        Hint: Show that
                     5.      (z + 8i) n
                       n=0 2 n+1                                                 z  n    2  1     z n
                                                                                                 zw
                                                                                    =            e dw
                       ∞   (1 − i) n                                            n!    2πi  γ n!w n+1
                     6.        (z − 3) n
                       n=0 n + 2
                                                                       for n = 0,1,2,··· and γ is the unit circle about the

                                               n
                     7. Is it possible for  ∞  c n (z − 2i) to converge at 0 and
                                     n=0                               origin.
                       diverge i?
                                                  n
                                     ∞
                     8. Is it possible for  c n (z − 4 + 2i) to converge at i
                                     n=0                           In each of Problems 18 through 24, determine the order of
                       and diverge at 1 + i?
                                                                   the zero of the function.
                     In each of Problems 9 through 14, find the Taylor expan-
                                                                             3
                     sion of the function about the point.         18. f (z) = z cos(z); z = 0
                                                                                2
                                                                             2
                                                                   19. f (z) = z sin (z); z = 0
                                                                                   2
                      9. cos(2z); z = 0                            20. f (z) = (z − π/2) cos(z); z = π/2
                                                                              3
                         −z
                     10. e ; z =−3i                                21. f (z) = cos (z); z = 3π/2
                                                                              4
                         2
                     11. z − 3z + i; z = 2 − i                     22. f (z) = cos (z − π/2), z = 0
                                                                                   2
                                                                                4
                         z
                     12. e − i sin(z); z = 0                       23. f (z) = sin(z )/z , z = 0
                             2
                     13. (z − 9) ;1 + i                            24. f (z) =  (z−π) 5  , z = π
                                                                            sin 2 (z)
                     14. sin(z + i);−i                             25. Suppose
                     15. Suppose f is differentiable in an open disk about 0
                                                                                  ∞           ∞
                        and satisfies f (z) = 2 f (z) + 1. Suppose f (0) = 1

                                                                                           n
                                                                            f (z) =  a n (z − z 0 ) =  b n (z − z 0 ) n
                        and f (0)=i. Find the first six terms of the Maclaurin

                                                                                 n=0          n=0
                        expansion of f (z).
                     16. Find the first seven terms of the Maclaurin expansion  in some open disk D about z 0 . Show that a n = b n for
                                 2
                        of f (z) = sin (z) in four ways, as follows.   n = 0,1,2,···.
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  15:35  THM/NEIL   Page-724        27410_21_ch21_p715-728
   739   740   741   742   743   744   745   746   747   748   749