Page 836 - Advanced_Engineering_Mathematics o'neil
P. 836

816    Answers to Selected Problems

                      9. Not collinear, 29x + 37y − 12z = 30
                     11. i − j + 2k
                     13.   F × G  =  F    G   sin(θ), and this is the area of a parallelogram having incident sides of length   F   and   G   and
                        incident angle θ.

                     Section 6.4 The Vector Space R n
                      1. Independent  3. Independent  5. Dependent
                      7. Dependent  9. Independent
                     11. A basis consists of < 1,0,0,−1 > and < 0,1,−1,0 > and the dimension is 2.
                     13. A basis consists of < 1,0,0,0 >,< 0,0,1,0 > and < 0,0,0,1 >. The dimension is 3.
                     15. The vector < 0,1,0,2,0,3,0 > forms a basis and the dimension is 1.
                     17.     1              1
                         X =  < 1,1,1,1,0 > + < −1,1,0,0,0 >
                             4              2
                              11
                            −   < 1,1,−1,−1,0 > + < 0,0,2,−2,0 > −2 < 0,0,0,0,2 >
                               4
                     19. Since a basis spans the space, form some numbers a 1 ,··· ,c k ,
                                                        U = a 1 V 1 + a 2 V 2 + ··· + a k V k .
                        If U 
= O, some a j 
= 0, so
                                                         U − a 1 V 1 −··· − a k V k = O,
                        and therefore, U,V 1 ,··· ,V k are linearly dependent by Theorem 6.1(1). If U = O,then

                                                           U − 0V 1 −··· − 0V k
                        again shows by Theorem 6.1(1) that U,V 1 ,··· ,V k are linearly dependent.
                     21. If X · X = Y · Y,then
                                               (X − Y) · (X + Y) = X · X + X · Y + Y · X − Y · Y = 0.
                                  n
                     23. Write X =  j=1 (X · V j )V j .Then
                                                      2
                                                    X   = X · X
                                                           n             n


                                                       =    (X · V j )V j ·  (X · V k )V k
                                                          j=1           k=1
                                                          n  n

                                                       =      (X · V j )(X · V k )
                                                         j=1 k=1
                                                          n

                                                                 2
                                                       =   (X · V j ) .
                                                         j=1
                     Section 6.5 Orthogonalization
                      1. V 1 =< 1,4,0 >,V 2 =< 52/17,−13/17,0 >
                      3. V 1 =< 0,2,1,1 >,V 2 =< 0,4/3,13/6,29/6 >,V 3 =< 0,7/179,−11/179,3/179 >
                      5. V 1 =< 0,0,2,2,1 >,V 2 =< 0,0,−1/9,−19/9,40/9 >,
                        V 3 =< 0,1,−341/218,279/218,62/218 >,V 4 =< 0,248/393,88/393,−24/131,−32/393 >
                      7. V 1 =< 0,0,1,1,0,0 >,V 2 =< 0,0,−3/2,3/2,0,0 >

                     Section 6.6 Orthogonal Complements and Projections
                      1. u S =< −2,6,0,0 >,u = u − u S =< 0,0,1,7 >
                                        ⊥
                      3. u S =< 9/2,−1/2,0,5/2,−13/2 >,u =< −1/2,−1/2,3,−1/2,−1/2 >
                                                   ⊥
                      5. u S =< 3,1/2,3,1/2,3,0,0 >,u =< 5,1/2,−2,−1/2,−3,−3,4 >
                                                ⊥
                                                                                   n
                                                                 ⊥
                      7. If u 1 ,··· ,u k is a basis for S and v 1 ,··· ,v m a basis for S , then any vector w in R has a unique representation
                                                   w = c 1 u 1 +··· + c k u k + d 1 v 1 + ··· + d m v m .

                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  17:50  THM/NEIL    Page-816        27410_25_Ans_p801-866
   831   832   833   834   835   836   837   838   839   840   841