Page 831 - Advanced_Engineering_Mathematics o'neil
P. 831
Answers to Selected Problems 811
1
5. a 0 and a 1 arbitrary; a 2 = (3 − a 0 ),
2
n − 1
a n+2 = a n for n = 1,2,··· ,
(n + 1)(n + 2)
and
y(x) =a 0 + a 1 x
1 1 3 3(5) 3(5)(7)
4
2
6
10
8
+ (3 − a 0 ) x + x + x + x + x +···
2! 4! 6! 8! 10!
7. a 0 , a 1 are arbitrary; a 2 + a 0 = 0, 6a 3 + 2a 1 = 1,
(n − 3)a n−3 − 2a n−2
a n = for n = 4,5,··· ,
n(n − 1)
and
1 1 1
2 4 5 6
y(x) =a 0 1 − x + x − x − x + ···
6 10 90
1 1 1 7
5
3
4
6
+ a 1 x − x + x + x − x + ···
3 12 30 180
1 1 1 1 1
3
6
8
5
7
x −− x + x + x − x + ···
6 60 60 1260 480
with a 0 = y(0) and a 1 = y (0). The third bracket is a particular solution for the case a 0 = a 1 = 0.
9. a 0 , a 1 arbitrary; 2a 2 + a 1 + 2a 0 = 1, 6a 3 + 2a 2 + a 1 = 0, 12a 4 + 3a 3 =−1,
−(n − 1)a n−1 + (n − 4)a n−2
a n = for n = 5,6,···
n(n − 1)
and
1 1 1
2 3 4 5
y(x) =a 0 1 − x + x − x + x −···
3 12 30
1 1 1
2
+ a 1 x − x 2 + x − x 3
2 2 6
1 1 1
6
7
7
− x − x + x +···
24 360 2520
Section 4.2 Frobenius Solutions
1. y 1 (x) = c 0 (1 − x),
1
y 2 (x) =c ∗ (1 − x)ln(x) + 3x + x 2
0
4
1 1 1
5
4
3
+ x + x + x +···
36 288 2400
4 5 6 7
3. y 1 (x)= c 0 [x + 2x + 3x + 4x +···]
x 4 3 − 4x
= c 0 , y 2 (x) = c 0 ∗
(1 − x) 2 (1 − x) 2
1 1
5. y 1 (x) = c 0 x 1/2 − x 3/2 + x 5/2
2(1!)(3) 2 (2!)(3)(5)
2
1 1
− x 7/2 + x 9/2 +···
4
3
2 (3!)(3)(5)(7) 2 (4!)(3)(5)(7)(9)
n
(−1)
= c 0 x 1/2 1 + ∞ x n ,
n=1
2 n!(3 · 5···(2n + 1))
n
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-811 27410_25_Ans_p801-866

