Page 831 - Advanced_Engineering_Mathematics o'neil
P. 831

Answers to Selected Problems  811


                                                  1
                             5. a 0 and a 1 arbitrary; a 2 = (3 − a 0 ),
                                                  2
                                                                   n − 1
                                                           a n+2 =         a n for n = 1,2,··· ,
                                                                (n + 1)(n + 2)
                                and

                                                 y(x) =a 0 + a 1 x
                                                               1    1     3    3(5)    3(5)(7)

                                                                       4
                                                                 2
                                                                            6
                                                                                             10
                                                                                    8
                                                      + (3 − a 0 )  x +  x +  x +  x +      x +···
                                                               2!   4!    6!    8!      10!
                             7. a 0 , a 1 are arbitrary; a 2 + a 0 = 0, 6a 3 + 2a 1 = 1,
                                                              (n − 3)a n−3 − 2a n−2
                                                           a n =             for n = 4,5,··· ,
                                                                  n(n − 1)
                                and

                                                                    1    1     1
                                                                 2    4     5     6
                                                     y(x) =a 0 1 − x + x −  x −  x + ···
                                                                    6    10    90
                                                                  1    1     1      7

                                                                                5
                                                                    3
                                                                          4
                                                                                       6
                                                          + a 1 x − x +  x +   x −    x + ···
                                                                  3    12    30    180
                                                           1      1     1      1      1

                                                             3
                                                                           6
                                                                                         8
                                                                     5
                                                                                  7
                                                             x −−   x +   x +    x −    x + ···
                                                           6      60    60    1260   480
                                with a 0 = y(0) and a 1 = y (0). The third bracket is a particular solution for the case a 0 = a 1 = 0.

                             9. a 0 , a 1 arbitrary; 2a 2 + a 1 + 2a 0 = 1, 6a 3 + 2a 2 + a 1 = 0, 12a 4 + 3a 3 =−1,
                                                            −(n − 1)a n−1 + (n − 4)a n−2
                                                        a n =                    for n = 5,6,···
                                                                   n(n − 1)
                                and
                                                                       1     1     1

                                                                     2    3     4    5
                                                         y(x) =a 0 1 − x + x −  x +  x −···
                                                                       3    12    30

                                                                      1     1    1
                                                                              2
                                                              + a 1 x − x  2  + x − x 3
                                                                      2     2    6
                                                                1     1       1
                                                                          6
                                                                                 7
                                                                   7
                                                              −   x −    x +    x +···
                                                                24    360   2520
                            Section 4.2 Frobenius Solutions
                             1. y 1 (x) = c 0 (1 − x),

                                                                                  1
                                                           y 2 (x) =c ∗  (1 − x)ln(x) + 3x + x 2
                                                                 0
                                                                                  4
                                                                   1     1      1
                                                                                    5
                                                                            4
                                                                     3
                                                                +   x +    x +     x +···
                                                                  36    288    2400
                                         4   5    6   7
                             3. y 1 (x)= c 0 [x + 2x + 3x + 4x +···]
                                         x  4         3 − 4x
                                    = c 0    , y 2 (x) = c 0 ∗
                                       (1 − x) 2      (1 − x) 2
                                                1           1

                             5. y 1 (x) = c 0 x 1/2 −  x  3/2  +  x 5/2
                                             2(1!)(3)   2 (2!)(3)(5)
                                                         2
                                            1                 1
                                      −            x 7/2  +          x 9/2  +···
                                                         4
                                        3
                                       2 (3!)(3)(5)(7)  2 (4!)(3)(5)(7)(9)
                                          
                 n
                                                        (−1)
                                    = c 0 x  1/2  1 +  ∞           x  n  ,

                                                n=1
                                                   2 n!(3 · 5···(2n + 1))
                                                    n
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-811        27410_25_Ans_p801-866
   826   827   828   829   830   831   832   833   834   835   836