Page 829 - Advanced_Engineering_Mathematics o'neil
P. 829
Answers to Selected Problems 809
4 1 1 1
t
2t
t
15. y(t) = e − e − e −2t − e ∗ f (t)
3 4 12 3
1 1
2t
+ e ∗ f (t) + e −2t ∗ f (t)
4 12
1 3
17. f (t) = e −2t − 19. f (t) = cosh(t)
2 2
2 √ √
21. f (t) = 3 + 15e t/2 sin 15t/2
5
23. r(t) = Akt
1 1
2
25. r(t) = (Ak + B)t + kB + C t + kCt 3
2 3
Section 3.5 Impulses and the Delta Function
1. y(t) = 3[e −2(t−2) − e −3(t−2) ]H(t − 2) − 4[e −2(t−5) − e −3(t−5) ]H(t − 5)
t
−t
3. y = 6(e −2t − e + te )
5. ϕ(t) = (B + 9)e −2t − (B + 6)e −3t
m k
7. y(t) = v 0 sin t
k m
Section 3.6 Solution of Systems
t/2
1. x(t) =−t − 2 + 2e , y(t) =−t − 1 + e t/2
1 4 2
3. x(t) = t + (1 − e 3t/4 ), y(t) = (−1 + e 3t/4 )
3 9 3
1 3 3
2
5. x(t) = (t + t ) + (1 − e 2t/3 ), y(t) = t + (1 − e 2t/3 )
2 4 2
−t
−t
2
7. x(t) = t − 1 + e cos(t), y(t) = t − t + e sin(t)
−t
9. x(t) = 1 − e − 2te , y(t) = 1 − e −t
−t
1 1 1 1 1
2
−t
t
−t
t
11. y 1 (t) =−1 − t + (e + e ), y 2 (t) =− t − t , y 3 (t) =− t − (e − e )
2 2 4 3 6
13. The loop currents satisfy
5i − 5i 1 − 5i = 1 − H(t − 4)sin(2(t − 4)),
1 2
−5i + 5i + 5i 2 = 0.
1
2
The currents are
1 1 −t/2
i 1 (t) = 1 − e
5 2
2 9
− e −(t−4)/2 − cos(2(t − 4)) + sin(2(t − 4)) H(t − 4)
85 2
1 2
i 2 (t) = e −t/2 + e −(t−4)/2
10 85
−cos(2(t − 4)) − 4sin(2(t − 4))) H(t − 4).
15. The system is
x + 8x 1 − 2x 2 = 1 − H(t − 2),−2x 1 + x + 5x 2 = 0.
2
1
The solution is
5 1 4
x 1 (t) = − cos(2t) − cos(3t)
36 20 45
5 1 4
− − cos(2(t − 2)) − cos(3(t − 2)) H(t − 2),
36 20 45
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 17:50 THM/NEIL Page-809 27410_25_Ans_p801-866

