Page 827 - Advanced_Engineering_Mathematics o'neil
P. 827

Answers to Selected Problems  807


                                                             6



                                                             4


                                                             2


                                                             0
                                                               0   2   4    6   8   10  12  14
                                                                               t
                                                             –2



                                                             FIGURE A.7 Graphs in Problem 17, Section 2.4




                            CHAPTER THREE THE LAPLACE TRANSFORM
                            Section 3.1 Definition and Notation
                                   2
                                  s − 4
                             1. 3
                                  2
                                 (s + 4) 2
                                14    7
                             3.   −
                                s  2  s + 49
                                     2
                                     1       3
                             5. −10      +
                                            2
                                   (s + 4) 3  s + 9
                                                 3 −3t
                             7. cos(8t)  9. e  −42t  − t e  /6
                                        5  1
                            15. L[ f ](s) =
                                        s 1 + e −3s
                                        5e −5s (1 − e −5s )
                            17. L[ f ](s) =
                                         s(1 − e −25s )
                                 Eω      1
                            19.
                                    2
                                 2
                                s + ω 1 − e  −πs/ω
                                           h
                            21. L[ f ](s) =
                                        s(1 + e −as )
                            Section 3.2 Solution of Initial Value Problems
                                   1  13
                             1. y =  −  e −4t
                                   4   4
                                     4      4        1
                             3. y =−  e −4t  +  cos(t) +  sin(t)
                                    17     17       17
                                    1   1   17
                             5. y =− + t +    e 2t
                                    4   2   4
                                   22    13     3        4
                                             2t
                                      2t
                             7. y =  e −   te +   cos(t) −  sin(t)
                                   25    5      25       25
                                   1    1   33        15
                             9. y =  +   t −  cos(4t) +  sin(4t)
                                   16  16   16        64
                            Section 3.3 Shifting and the Heaviside Function
                                  6       3       2
                             1.       −       +
                                (s + 2) 4  (s + 2) 2  s + 2
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-807        27410_25_Ans_p801-866
   822   823   824   825   826   827   828   829   830   831   832