Page 830 - Advanced_Engineering_Mathematics o'neil
P. 830

810    Answers to Selected Problems

                                                  1   1         2
                                            x 2 (t) =  −  cos(2t) +  cos(3t)
                                                 18   10       45

                                                    1    1             2
                                                 −    −    cos(2(t − 2)) +  cos(3(t − 2)) H(t − 2)
                                                    18  10            45
                     17. The equations of motion are


                                                     m 1 y = k(y 2 − y 1 ),m 2 y = k(y 1 − y 2 )
                                                        1
                                                                      2
                        with initial conditions y 1 (0) = y (0) = y (0) = 0, y 2 (0) = d. Transform these to find that Y 1 (s) and Y 2 (s) have


                                                     2
                                               1
                        quadratic factors
                                                                 m 1 + m 2
                                                              2
                                                             s +       k
                                                                  m 1 m 2
                                                                        √
                        in their denominators, implying that the motion has frequency ω =  (m 1 + m 2 )k/m 1 m 2 , hence period

                                                                  m 1 m 2
                                                             2π         .
                                                                 m 1 + m 2
                     19. With E(t) = 5δ(t − 1),
                                                          1    −(t−1)  −(t−1)/6
                                                    i 1 (t) =  e  + 3e    H(t − 1)
                                                          10
                                                          1    −(t−1)  −(t−1)/6
                                                    i 2 (t) =  −e  + e     H(t − 1)
                                                          10
                     21. x 1 (t)= e −3t/50  + 9e −t/100  + 3(e  −(t−3)/100  − e −3(t−3)/50 )H(t − 3)
                         x 2 (t)=−e −3t/50  + 6e −t/100  + (3e  −(t−3)/50  + 2e −(t−3)/100 )H(t − 3)
                     Section 3.7 Polynomial Coefficients

                      1. With u = 1/t, obtain −z (u) − 2z = 2where z(u) = y(t(u)).Then y(t) =−1 + ce  −2/t .
                      3. y = 7t  2
                             2 −t
                      5. y = ct e
                      7. y = 4
                            3 2
                      9. y = t
                            2
                     11. With W(s) being inverted, use is made of the formula for the Laplace transform of n!/s n+1  for n any nonnegative
                        integer.
                     CHAPTER FOUR SERIES SOLUTIONS
                     Section 4.1 Power Series Solutions
                                                          1
                      1. a 0 is arbitrary; a 1 = 1, 2a 2 − a 0 =−1, and a n = a n−2 for n = 3,4,···;
                                                          n
                                                            1     1       1
                                                               3
                                                                               7
                                                                      5
                                                y(x) =a 0 + x + x +  x +      x +···
                                                            3    3 · 5  3 · 5 · 7
                                                             1     1       1

                                                                               6
                                                                      4
                                                               2
                                                     (a 0 − 1)  x +  x +      x +···
                                                             2    2 · 4  2 · 4 · 6
                      3. a 0 is arbitrary; a 1 + a 0 = 0, 2a 2 + a 1 = 1,
                                                           1
                                                    a n+1 =  (a n−2 − a n ) for n = 2,3,··· ,
                                                         n + 1
                        and

                                                              1     1    7
                                                                      3
                                                                            4
                                                                 2
                                                y(x) =a 0 1 − x +  x +  x −  x +···
                                                              2!    3!   4!
                                                        1    1     1    11    31
                                                                                 6
                                                                           5
                                                               3
                                                                     4
                                                          2
                                                     +   x −  x +   x +   x −   x +···
                                                       2!    3!   4!    5!    6!
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  17:50  THM/NEIL    Page-810        27410_25_Ans_p801-866
   825   826   827   828   829   830   831   832   833   834   835