Page 112 - Advanced Linear Algebra
P. 112

96    Advanced Linear Algebra




                               ²#³          ²#³
                          # ~     % b # c      % 7   º%» b ker ² ³
                                      6
                               ²%³          ²%³
            and so =~ º%» l ker ²   . ³

                     )
            For part 4 , if   ~    for     £   ,  then  ker ² ³ ~ ker ² ³ .  Conversely,  if

                                                         )
            2 ~ ker ² ³ ~ ker ² ³, then for  % ¤ 2 we have by part 3 ,
                                      =~ º%» l 2


                                for any  . Therefore, if  ~  ²%³° ²%³ , it follows that
                       2
            Of course,  O ~  O 2
                                      ²%³ ~  ²%³ and hence
                                  ~  .…
            Dual Bases
            Let   be a vector space with basis 8  ~ ¸# “ 0¹ . For each  0 , we can
               =

                                 i
            define a linear functional # =  *  by the orthogonality condition

                                        i
                                       #²# ³ ~
                                                   Á
                     is the Kronecker delta function , defined by
            where    Á
                                                   ~ if
                                       Á  ~ F
                                                   £ if
                         i
                               i
            Then  the  set  8 ~¸# “  0¹  is linearly independent, since applying the

            equation
                                         i
                                    ~   # bÄb  #     i




                              gives
            to the basis vector #

                               ~     #²# ³ ~       i                              Á     ~
                                  ~            ~
            for all  .


                           =
            Theorem 3.11 Let   be a vector space with basis  ~  8  ¸  #     “       0  . ¹
                            i
             )
                       i
            1   The set 8 ~¸# “  0¹  is linearly independent.

             )
                 =
            2   If   is finite-dimensional, then 8 i   is a basis for  =  i  , called the dual basis  of
               8.
                         )
            Proof. For part 2 , for any   =  i , we have
                                     i          ²# ³# ²# ³ ~     ²# ³     Á       ~  ²# ³

            and so  ~     ²# ³# i     is in the span of 8  i  . Hence, 8  *  is a basis for =  i  .…
   107   108   109   110   111   112   113   114   115   116   117