Page 196 - Advanced Linear Algebra
P. 196

180    Advanced Linear Algebra




            When  ~   , we can write   ²%³  as


                         ²%Â  Á  ³ ~   b   % b % ~ %²% b  ³ b






            which looks suspiciously like a determinant:
                                             %
                             ²%Â  Á  ³ ~ det >         ?

                                             c   % b
                                                      c
                                       ~     % det 6  0  c  >  ?  7
                                                      c
                                       ~ det ²%0 c *´  ²%³µ³

            So, let us define
                                   ³ ~ %0 c *´  ²%³µ
                     (²%Â   Á Ã Á        c
                                       v  %       Ä                y
                                       x  c   %   Ä               {
                                     ~ x  x     c     Æ       Å   {  {
                                       x                          {
                                         Å    Å   Æ   %         c
                                       w          Ä   c     %  b      c   z
            where   is an independent variable. The  determinant  of this matrix is a
                  %
                        %
            polynomial in   whose degree equals the number of parameters   ÁÃÁ       c  .
            We have just seen that
                               det²(²%Â  Á  ³³ ~   ²%Â  Á  ³





            and this is also true for  ~  . As a basis for induction, if
                                                              ³
                          det²(²%Â  ÁÃÁ       c     ³³ ~   ²%Â  ÁÃÁ       c

            then expanding along the first row gives
             det²(²%Á  ÁÃÁ  ³³


                                                     v  c   %   Ä       y
                                                          x     c     Æ  {
                    ~ %  det²(²%Á  ÁÃÁ  ³³ b ²c ³      detx            {


                                                        Å    Å  Æ    %
                                                     w          Ä   c     z
                                                                         d
                    ~ %  det²(²%Á  ÁÃÁ  ³³ b




                    ~%   ²%Â   Á Ã Á   ³ b


                    ~  % b   % b Ä b   % b%      b     b



                          ²%Â  ÁÃÁ  ³
                    ~    b
            We have proved the following.
   191   192   193   194   195   196   197   198   199   200   201