Page 197 - Advanced Linear Algebra
P. 197

The Structure of a Linear Operator  181



            Lemma 7.17 For any  ²%³  -´%µ ,
                                 det²%0 c *´ ²%³µ³ ~  ²%³                  …

            Now suppose that  9  is a matrix in  the elementary divisor form of rational
            canonical form. Since the determinant of a block diagonal matrix is the product
            of the determinants of the blocks on the diagonal, it follows that
                              det²%0 c 9³ ~      ²%³ ~   ²%³
                                                  Á
                                                       9
                                            Á
            Moreover, if (— 9 , say (~ 797  c  , then
                          det²%0 c (³ ~  det²%0 c 797  c  ³
                                     ~  det ´  7  ²  %  0  c  9  ³  7  c  µ
                                     ~  det²  7  ³  det²  %  0  c  9  ³  det²  7  c  ³
                                     ~  det²  %  0  c  9  ³
            and so
                         det²%0 c (³ ~  det²%0 c 9³ ~   ²%³ ~   ²%³
                                                           (
                                                    9
            Hence, the fact that all matrices have a rational canonical  form  allows  us  to
            deduce the following theorem.


                               B

                                      (
            Theorem 7.18 Let  ²= ³ . If   is any matrix that represents  , then
                                  ²%³ ~   ²%³ ~ det ²%0 c (³               …
                                        (

            Changing the Base Field
            A change in the base field will generally change the primeness of polynomials
            and therefore has an effect on the multiset of elementary divisors. It is perhaps a
            surprising fact that a change of base field has no effect  on the invariant factors—
            hence the adjective invariant .

            Theorem 7.19 Let   and   be fields with  -  ‹  2  . Suppose that the elementary
                                 2
                           -
            divisors of a matrix ( C   ²-³  are
                                                    Á         Á
                            7 ~ ¸     Á ÃÁ     ÁÃÁ      Á   ÁÃÁ      Á   ¹
            Suppose also that the polynomials   can be further factored over  , say

                                                                 2
                                       ~      Á  Ä     Á

                                            Á
                                                 Á
                               2

            where   Á   is prime over  . Then the prime powers
                                          Á      Á      Á   Á          Á       Á
                               Á
                             Á
                     8 ~ ¸   Á   Á ÃÁ   Á     ÁÃÁÃÁ   Á   ÁÃÁ   Á     ¹
            are the elementary divisors of   over  .
                                          2
                                    (
   192   193   194   195   196   197   198   199   200   201   202