Page 230 - Advanced Linear Algebra
P. 230

214    Advanced Linear Algebra





                                      "~# c       "

                                              ~
            where

                                                 "     ~ if
                                    ~  H  º#Á" »    if  "£

                                         º" Á" »
            Proof. We simply set

                                  " ~ #c  " cÄc  "

                           for all  , that is,

            and force "ž"



                     ~ º"Á" » ~ º# c   " c Ä c   " Á" » ~ º#Á" » c   º" Á" »




            Thus, if "~   , take   ~    and if "£   , take



                                            º#Á " »
                                        ~                                  …

                                            º" Á " »
            The  Gram–Schmidt  augmentation is traditionally applied to a sequence of
            linearly independent vectors, but it also applies to any sequence of vectors.
            Theorem  9.11  ( The Gram–Schmidt orthogonalization process) Let
            8 ~ ²#Á #Á Ã ³ be a sequence of vectors in an inner product space  . Define a
                                                                   =


            sequence E ~ ²"Á "Á Ã ³  by repeated Gram–Schmidt augmentation, that is,


                                              c
                                    "~ # c        "       Á


                                               ~
                        and
            where "~ #
                                                  "     ~ if
                                     ~  Á   H  º# Á" »      if  "£
                                          º" Á" »
            Then   is an orthogonal sequence in   with the property that
                 E
                                           =
                                  º" ÁÃÁ" » ~ º# ÁÃÁ# »




            for all   €   . Also, " ~    if and only if #  º# ÁÃÁ#          c     . »

            Proof. The result holds for   ~   . Assume it  holds  for    c   .  If
                           », then
            #  º# ÁÃÁ#    c


                                                           »



                              #  º# ÁÃÁ#  c   » ~ º" ÁÃÁ"  c
            Writing
   225   226   227   228   229   230   231   232   233   234   235