Page 231 - Advanced Linear Algebra
P. 231
Real and Complex Inner Product Spaces 215
c
#~ "
~
we have
if " ~
º# Á " » ~ F
if
º"Á "» " £
Therefore, ~ Á when " £ and so " ~ . Hence,
» ~ º# ÁÃÁ# »
º" ÁÃÁ" » ~ º" ÁÃÁ" c Á » ~ º# ÁÃÁ# c
» then
If # ¤ º# ÁÃÁ# c
Á# »
º" ÁÃÁ" » ~ º# ÁÃÁ# c Á" » ~ º# ÁÃÁ# c
Example 9.4 Consider the inner product space s´%µ of real polynomials, with
inner product defined by
º ²%³Á ²%³» ~ ²%³ ²%³ %
c
Applying the Gram–Schmidt process to the sequence 8 ~ ² Á %Á %Á %Á Ã ³
gives
"²%³ ~
% %
"²%³ ~ % c c h ~ %
%
c
% % % %
" ²%³ ~% c c h c c h % ~% c
3
% % %
c c
% % % % %²%c ³ %
"²%³ ~ % c c h c c h % c c 3 h% c ?
>
4
% % % ²% c ³ %
c c c 3
~% c %
(
and so on. The polynomials in this sequence are at least up to multiplicative
)
constants the Legendre polynomials .
The QR Factorization
The Gram–Schmidt process can be used to factor any real or complex matrix
into a product of a matrix with orthogonal columns and an upper triangular
matrix. Suppose that ( ~ ²# # Ä# ³ is an d matrix with columns
# , where . The Gram–Schmidt process applied to these columns gives
orthogonal vectors 6 ~ ²" " Ä" ³ for which