Page 231 - Advanced Linear Algebra
P. 231

Real and Complex Inner Product Spaces  215




                                            c
                                       #~       "

                                            ~
            we have

                                                   if  "     ~
                               º# Á " » ~ F


                                                        if
                                          º"Á "»      " £

            Therefore,  ~        Á      when " £    and so " ~   . Hence,


                                                         » ~ º# ÁÃÁ# »
                  º" ÁÃÁ" » ~ º" ÁÃÁ"      c     Á » ~ º# ÁÃÁ#      c


                            »  then


            If # ¤ º# ÁÃÁ#    c
                                                              Á# »         …


                       º" ÁÃÁ" » ~ º# ÁÃÁ#      c     Á" » ~ º# ÁÃÁ#      c

            Example 9.4 Consider the inner product space s´%µ  of real polynomials, with
            inner product defined by

                                º ²%³Á  ²%³» ~     ²%³ ²%³ %
                                             c


            Applying  the  Gram–Schmidt process to the sequence  8 ~ ² Á %Á %Á %Á Ã ³
            gives
              "²%³ ~

                               % %
              "²%³ ~ % c  c     h   ~ %

                                 %
                           c
                                % %          % %




              " ²%³ ~% c   c      h   c  c     h % ~% c
               3
                                  %          %  %
                            c           c



                                % %          % %     %²%c ³ %




              "²%³ ~ % c   c      h   c  c     h % c  c      3   h% c ?
                                                                  >
               4
                                  %          %  %       ²% c ³  %



                            c           c            c     3


                   ~% c %

                                                     (
            and so on. The polynomials in this sequence are  at least up to multiplicative
                   )
            constants  the Legendre polynomials .…
            The QR Factorization
            The Gram–Schmidt process can be used to factor any real or complex matrix
            into a product of a matrix with orthogonal columns and an  upper  triangular
            matrix. Suppose that ( ~ ²# “# “Ä“# ³  is an   d    matrix with columns



            #           , where        . The Gram–Schmidt process applied to these columns gives
            orthogonal vectors 6 ~ ²" “" “Ä“" ³  for which
   226   227   228   229   230   231   232   233   234   235   236