Page 251 - Advanced Linear Algebra
P. 251

Structure Theory for Normal Operators  235



               and so
                                           i


                                       ker²³ ~  ker² ³
             )
            3   For any integer  ‚   ,


                                       ker²³ ~  ker² ³

             )
            4   The minimal polynomial   ²%³  is a  product of distinct  prime  monic

               polynomials.
            5)
                                         #~ #      ¯  i   #~ #
             )   :    ;                 =   with relatively prime orders, then  ž  :  . ;
            6   If   and   are submodules of
             )                                      ;   ; ž  .
            7   If   and   are distinct eigenvalues of  , then
            Proof. We leave part 1) for the reader. For part 2), normality implies that
                         º #Á $» ~ º      i  #Á #» ~ º       i  #Á #» ~ º #Á   i  i  #»



            We prove part 3) first for the operator  ~     i    , which is self-adjoint , that is,

                                     i    ~²  i     i   ³ ~  i     ~

            If   #~   for   €  , then
                                 ~  º    #  Á     c  #    »  ~  º   c  #    Á   c  #    »

            and so     c  #~  . Continuing in this way gives    #~  . Now, if      #~   for
             €  , then

                                                i
                                        #~²  i          ³ #~² ³          #~
            and so  #~  . Hence,
                                            i



                                ~ º #Á#» ~ º   #Á#» ~ º #Á #»
            and so  #~  .
            For part 4 , suppose that
                    )

                                      ²%³ ~   ²%³ ²%³

            where  ²%³  is monic and prime. Then for any #  =  ,


                                      ² ³´ ² ³#µ ~

            and since  ² ³  is also normal, part 3) implies that

                                       ² ³´ ² ³#µ ~


            for all #=  . Hence,  ² ³ ² ³~  , which implies that   ~  . Thus, the prime


            factors of  ²%³  appear only to the first power.
   246   247   248   249   250   251   252   253   254   255   256