Page 304 - Advanced Linear Algebra
P. 304

288    Advanced Linear Algebra




                                  v                                y
                                  x   Æ                            {
                                  x                                {
                                  x                                {
                                  x                                {
                                  x  x       c                     {  {
                     4~ Z  Á Á   ~ x              Æ                {
                       8
                                  x                                {
                                  x                   c            {
                                  x                                {
                                  x                                {
                                  x                                {
                                                              Æ
                                  w                                 z

            with   ones,   negative ones and   zeros on the diagonal.…


            Here is the matrix version of Theorem 11.25.
            Theorem 11.26 Let I    be the set of all  d   symmetric matrices over the real
            field .
                s
             )                                                             for
            1   Any matrix in I    is congruent to a unique matrix of the form Z  Á Á  Á
                some    and   ~   c  c   .
                     Á


             )                                                       is  a  set  of
            2   The set of all matrices of the form Z  Á Á    for   b   b   ~
                                               .
                canonical forms for congruence on I
             )                                                    is the rank of
            3   Let 4 I    and let 4   be congruent to A  Á Á  . Then   b
                4       and   c      is the signature  4  of    and the triple  ²     Á     Á     ³   is the inertia
                of  4  .  The  pair  ² Á  ³ , or equivalently the pair  ²  b Á   c ³ , is a
                                                   .
                complete invariant under congruence on I
                                                              )
            Proof. We need only prove the uniqueness statement in part 1 . Let
                             8 ~ ²" Á ÃÁ" Á# ÁÃÁ# Á' ÁÃÁ' ³






            and
                                                  Z
                                                          Z
                                            Z
                                         Z
                                                    Z
                                   Z
                             9 ~ ²" Á ÃÁ" Á# ÁÃÁ# ' ÁÃÁ' ³
                                         Z




                                                   Z


                                                           Z
            be ordered bases for which the matrices 4   and 4 8  9   have the form shown in
            Theorem 11.25. Since the rank of these matrices  must  be  equal,  we  have
             b   ~   b    and so    ~   .
                          Z
                     Z
                                     Z
            If %  span ²" ÁÃÁ" ³  and % £   , then



               º%Á %» ~ L    " Á          " M        ~       º" Á "» ~             ~      €
                                                               Á



                                          Á              Á
                                      Z
            On the other hand, if &  span ²# ÁÃÁ# ³  and & £   , then
                                            Z

                                             Z


                                              Z
                                                 Z
             º&Á &» ~ L   #Á         Z    # M        Z  ~       º# Á # » ~ c          ~ c     
                                                              Á




                                        Á               Á
                                   Z
            Hence, if &  span ²# ÁÃÁ# Á' ÁÃÁ' ³  then º&Á &»    . It follows that
                             Z
                                            Z
                                      Z

                                    Z

                                             Z
   299   300   301   302   303   304   305   306   307   308   309