Page 349 - Advanced Linear Algebra
P. 349

Hilbert Spaces  333



            Proof. Only the uniqueness remains to be established. Suppose that
                                  )    V )%c% ~    ~  )  Z ) % c%

            Then, by the parallelogram law,
                                      Z
                     )  V  Z  )% c %  ~ ²% c % ³ c  ) ²% c %³ V
                                )
                                                 Z               Z
                                                      )
                                 ) ~    )%c% V  ) b   % c%  )  c  %c%c%  ) V
                                                            V
                                                            %b%  Z
                                                 Z
                                 ) ~    )%c% V  ) b   % c%  )  c  h  h %c
                                                              2
                                     b       c       ~
                  V
            and so %~% Z .…
            Since  any  subspace   of an inner product space   is convex, Theorem 13.9
                             :
                                                     =
            applies to complete subspaces. However, in this case, we can say more.
                                                              :
            Theorem 13.10  Let  =   be an inner product space and let   be a complete
                      =
                                                                      :
                                                                  %
            subspace  of  . Then for any %    =  , the best approximation to   in   is the
                        Z
                                          Z
            unique vector % :  for which % c %ž : .
                                  Z
                                              Z
            Proof. Suppose that %c% ž : , where %  : . Then for any    : , we have
                 Z
            %c% ž  c%  and so
                        Z
                         )    ) %c      ~  )  Z  )%c%  b  )  Z    )% c     ‚  )   Z  )%c%
                   Z
            Hence %~ % V  is the best approximation to   in  . Now we need only show that
                                                  :
                                               %
            %c% ž :, where   is the best approximation to  % in  :. For any     :, a little
                           % V
               V
            computation reminiscent of completing the square gives
                         2
                 )      )%c    ~ º%c  Á % c  »
                          ~ %                       ) )
                            )) c º%Á  »c º Á %»b
                          ~ %      ) )    8     c   º%Á  »  c  º%Á  » 9
                            )) b


                                              ))      ))
                          ~%       ) )    8    c  º%Á  » 9  8    c  º%Á     9  c  (  »    (º%Á  »
                            )) b

                                            ))          ))        ))

                          ~%      b   ) )      c  º%Á  »  c  (  º%Á  »(    e
                            ))
                                                e
                                                        ))
                                                     ))
            Now, this is smallest when
                                              º%Á  »
                                      ~  •

                                                  ))
   344   345   346   347   348   349   350   351   352   353   354