Page 350 - Advanced Linear Algebra
P. 350

334    Advanced Linear Algebra



            in which case

                                                       (º%Á  »
                                                  (
                                )      )%c     )    ) ~ %  c

                                                   ))
                    %
            Replacing   by  c  %  V  gives
                            %

                                                    (     V  (º% c %Á  »

                          )           )%c%c     ) V  ) ~ % c% V  c
                                                       ))

               %
            But   is the best approximation to   in   and since  c  % V  :  %  V            :   we must have
                                 )           )%c%c        ) V  ) ‚ % c% V
            Hence,
                                     (    V   (º% c %Á  »
                                                ~

                                         ))
            or equivalently,

                                      º% c %Á  » ~
                                           V
                      V
            Hence, %c% ž : .…
            According to Theorem 13.9, if   is a complete subspace of an inner product
                                      :
            space  , then for any    %  =  , we may write
                 =
                                         V
                                     %~% b ²% c %³ V
                                                                     ž
            where %  :  and % c %  : ž  . Hence, = ~ : b : ž   and since : q : ~ ¸ ¹ ,
                  V
                               V
            we also have =~ : p : ž . This is the projection theorem for arbitrary inner
            product spaces.
            Theorem 13.11  The projection theorem) If   is a complete subspace of an
                          (
                                                  :
            inner product space  , then
                            =
                                       =~ : p : ž
            In particular, if   is a closed subspace of a Hilbert space  , then
                         :
                                                          /
                                       /~ : p : ž                          …
            Theorem 13.12 Let  ,   and   be subspaces of an inner product space  .
                                      Z
                                                                       =
                            :;
                                    ;
             )
            1 If =~ : p ;   then ; ~ : ž .
             )
            2 If :p ; ~ :p ;  Z   then ; ~ ;  Z  .
            Proof. If =~ : p ; , then ; ‹ : ž  by definition of orthogonal direct sum. On
            the other hand, if ' : ž , then '~   b ! , for some    :  and !  ;  . Hence,
                                ~ º'Á  » ~ º Á  » b º!Á  » ~ º Á  »
   345   346   347   348   349   350   351   352   353   354   355