Page 41 - Advanced Linear Algebra
P. 41
Preliminaries 25
Theorem 0.25 The integers form a principal ideal domain. In fact, any ideal ?
{
?
in is generated by the smallest positive integer a that is contained in .
Theorem 0.26 The ring -´%µ is a principal ideal domain. In fact, any ideal is
?
generated by the unique monic polynomial of smallest degree contained in .
?
Moreover, for polynomials ²%³Áà Á ²%³ ,
º ²%³Á à Á ²%³» ~ ºgcd ¸ ²%³Á à Á ²%³¹»
?
Proof. Let be an ideal in -´%µ and let ²%³ be a monic polynomial of
smallest degree in . First, we observe that there is only one such polynomial in
?
? ?. For if ²%³ is monic and deg ² ²%³³ ~ deg ² ²%³³ , then
²%³ ~ ²%³ c ²%³ ?
and since deg² ²%³³ deg² ²%³³ , we must have ²%³ ~ and so
²%³ ~ ²%³.
?
We show that ~ º ²%³» . Since ²%³ ? , we have º ²%³» ? . To establish
the reverse inclusion, if ²%³ ? , then dividing ²%³ by ²%³ gives
²%³ ~ ²%³ ²%³ b ²%³
where ²%³ ~ or deg ²%³ deg ²%³ . But since is an ideal,
?
²%³ ~ ²%³ c ²%³ ²%³ ?
and so deg ²%³ deg ²%³ is impossible. Hence, ²%³~ and
²%³ ~ ²%³ ²%³ º ²%³»
This shows that º ²%³» and so ~ º ²%³» .
?
?
To prove the second statement, let ? ~ º ²%³Áà Á ²%³» . Then, by what we
have just shown,
? ~ º ²%³Áà Á ²%³» ~ º ²%³»
where ²%³ is the unique monic polynomial ²%³ in of smallest degree. In
?
particular, since ²%³ º ²%³» , we have ²%³ ²%³ for each ~ Á Ã Á .
In other words, ²%³ is a common divisor of the ²%³ 's.
Moreover, if ²%³ ²%³ for all , then ²%³ º ²%³» for all , which implies
that
²%³ º ²%³» ~ º ²%³Á à Á ²%³» º ²%³»
and so ²%³ ²%³ . This shows that ²%³ is the greatest common divisor of the
²%³'s and completes the proof.