Page 41 - Advanced Linear Algebra
P. 41

Preliminaries  25



            Theorem 0.25 The integers form a principal ideal domain. In fact, any ideal ?
              {
                                                                     ?
            in   is generated by the smallest positive integer a that is contained in  .…
            Theorem 0.26 The ring -´%µ  is a principal ideal domain. In fact, any ideal   is
                                                                         ?
            generated by the unique monic polynomial of smallest degree contained in  .
                                                                           ?
            Moreover, for polynomials   ²%³Áà Á  ²%³ ,


                         º  ²%³Á à Á   ²%³» ~ ºgcd ¸  ²%³Á à Á   ²%³¹»




                      ?
            Proof. Let   be an ideal in  -´%µ  and  let   ²%³   be  a  monic  polynomial  of
            smallest degree in  . First, we observe that there is only one such polynomial in
                           ?
            ?             ?. For if  ²%³    is monic and deg ² ²%³³ ~ deg ² ²%³³ , then
                                   ²%³ ~  ²%³ c  ²%³  ?
            and since  deg² ²%³³   deg² ²%³³ , we must have   ²%³ ~    and  so
             ²%³ ~  ²%³.
                       ?
            We show that  ~ º ²%³» . Since  ²%³   ?  , we have º ²%³» ‹  ?  . To establish
            the reverse inclusion, if  ²%³  ?  , then dividing  ²%³  by  ²%³  gives
                                   ²%³ ~  ²%³ ²%³ b  ²%³

            where  ²%³ ~    or     deg  ²%³   deg  ²%³ . But since   is an ideal,
                                                          ?
                                 ²%³ ~  ²%³ c  ²%³ ²%³  ?
            and so   deg  ²%³  deg   ²%³  is impossible. Hence,  ²%³~   and

                                  ²%³ ~  ²%³ ²%³  º ²%³»
            This shows that  ‹ º ²%³»  and so  ~ º ²%³» .
                                         ?
                         ?
            To prove the second statement, let ? ~ º  ²%³Áà Á  ²%³» . Then, by what we


            have just shown,
                              ? ~ º  ²%³Áà Á  ²%³» ~ º ²%³»


            where  ²%³  is the unique monic polynomial  ²%³  in   of smallest degree. In
                                                         ?
            particular, since   ²%³  º ²%³» , we have  ²%³ “   ²%³  for each   ~  Á à Á   .


            In other words,  ²%³  is a common divisor of the   ²%³ 's.



            Moreover, if  ²%³ “   ²%³  for all  , then   ²%³  º ²%³»  for all  , which implies


            that
                          ²%³  º ²%³» ~ º  ²%³Á à Á   ²%³» ‹ º ²%³»


            and so  ²%³ “  ²%³ . This shows that  ²%³  is the greatest  common divisor of the
             ²%³'s and completes the proof.…
   36   37   38   39   40   41   42   43   44   45   46