Page 412 - Advanced Linear Algebra
P. 412

396    Advanced Linear Algebra




                                     .   ~ 4  .  Z  4  r  .  Z  4  Z
            where  .  Z   are the tensors that have   in positions   and  :



                   4
                        Z
                      . 4  ~ ¸  nÄn            nÄn       nÄn  ¹


                                      position     position
            Then   ²   ³  fixes each element of .  4  Z   and sends the elements of .  Z  4  Z   to other

            elements of . ZZ 4  . Hence, applying  ²   ³  to the corresponding decomposition of
            :²#³:
             4
                                    :²#³ ~ : 4  Z  b : 4  Z  Z
                                     4
            gives
                       c²: 4  Z  b : ³ ~ c: 4  Z  4  Z  ~    ²   ³ : 4  ~ : 4  Z  b    : 4²   ³  Z  Z
            and so  :  Z 4  ~     , whence  4 ²  #  ³  ~     . Thus,  4   is a set.
                                :
                                 ,
            Now, since for any   :
                                   .   ~ 4  ¸  !     “  !    .  ¹ 4

            equation (14.4) implies that

                    ²c ³       !~           ! !    9  ~    !         8 !  !~             c   ! !
                         !. 4        !. 4      !. 4      !. 4
            which holds if and only if      ! ~²c ³      c   ! , or equivalently,

                                                         !  ! ~²c ³

            for all  !. 4   and     :    .  Choosing  "~" 4  ~  n Ä n               ,  where
              Ä         ,  as  standard-bearer, if    "  Á  !   denotes the permutation for which
               ²"³ ~ !, then
                "Á!
                                                "Á!    !  " ~²c ³
            Thus,   is antisymmetric if and only if it has the form
                 #

                                 #~    8         ²c ³   "Á! ! 9 4
                                     4      !. 4

            where  4        " ~  £      and the sum is over a family of sets .
            In summary, the symmetric tensors are
   407   408   409   410   411   412   413   414   415   416   417