Page 415 - Advanced Linear Algebra
P. 415

Tensor Products   399



            manner that holds regardless of the  characteristic of the base field. Namely,
            rather than restricting the domain of   in order to get an isomorphism, we can

            factor out by the kernel of  .

            Consider a tensor

                                               p         s
                              #~    : ²#³ ~    4         ! !
                                  4          4  q  !. ²#³  t
                                                   4
            Since   sends elements of different groups  .²#³ ~ ¸! Á Ã Á ! ¹  to different

                                                  4


                                       c

            monomials in - ´ Á à Á   µ  or - ´ Á à Á   µ , it follows that #  ker ² ³  if and





            only if  ²: ²#³³ ~    for all 4 , that is, if and only if
                     4
                                   !  !b Ä     ! b  ! ~



            In the symmetric case,   is constant on .²#³  and so #  ker ² ³  if and only if
                                             4
                                       bÄb      !  ~
                                               !
            In  the  antisymmetric case,           Á   !~ ²c ³   where    !       Á   ²! ³ ~ !        and so
            # ker ² ³ if and only if

                              ²c ³       bÄb²c ³     Á    Á     !  ~
                                                        !
            In both cases, we solve for   !   and substitute into  4    :²#³ . In the symmetric case,
                                      ~c    !  !         c Ä c  !
            and so
                  :  ²  # 4  ³  ~  !    b !  Ä    b  !       ~ !  ²    ! !    c  !    ³  b      Ä  b  ²    ! !  c  !    ³

            In the antisymmetric case,
                               ~ c²c ³     Á    !          Á    cÄc²c ³  !
                                           !
            and so
                     :²#³ ~    4  !     ! b Ä b       !     !
                           ~    !  ²²c ³     Á  ! c ! ³ b Ä b            !  ²²c ³     Á  ! c ! ³


            Since ! 8 , it follows that : ²#³  and therefore  , is in the span of tensors of
                                                     #
                                    4

            the form          in the symmetric  case  and  ²c ³           ²!³ c !  ²!³ c !   in  the
                                        and !  . 8
            antisymmetric case, where  :
            Hence, in the symmetric case,



                           ker² ³ ‹0 •º   ²!³ c !“! Á    8   : »

            and  since     ²!³ c !³~  ,  it follows that  ker    ² ³~0   . In the antisymmetric
                      ²
            case,
   410   411   412   413   414   415   416   417   418   419   420