Page 420 - Advanced Linear Algebra
P. 420
404 Advanced Linear Algebra
Consider the map ¢ = d ¦ - defined by
²#Á Ã Á # ³ ~ ²c ³ ´#µ Ä´# µ
:
Then is multilinear since
² # b " Á Ã Á # ³ ~ ²c ³ ´ # b " µ Ä´# µ
:
~ ² c ³ ² ´ # µ b ´ " µ ³ Ä ´ # µ ()
:
~ ²c ³ ´# µ Ä´# µ
:
b ²c ³ ´" µ Ä´# µ
:
~ ²# Á Ã Á # ³ b ²" Á # Á Ã Á # ³
and similarly for any coordinate position.
To see that is alternating, and therefore antisymmetric since char ² - ³ £ ,
suppose for instance that #~ # . For any permutation : , let
Z ~² ³
Z
Then %~ % for % £ Á and
Z ~ and Z ~
Hence, Z £ . Also, since ² Z Z ~ ³ , if the sets Á ¸ Z ¹ and Á ¸ Z ¹ intersect,
then they are identical. Thus, the distinct sets ¸Á Z ¹ form a partition of : . It
follows that
²#Á #Á #Á Ã Á # ³ ~ ²c ³ ´#µ ´#µ Ä´# µ
:
Z
~ > ²c ³ ´# µ ´# µ Ä´# µ b ²c ³ ´# µ ´# µ Ä´# µ Z ?
Z
Z
pairs ¸Á ¹
Z
But
´#µ ´#µ ~ ´#µ ´#µ Z Z
and since ²c ³ ~ c²c ³ Z , the sum of the two terms involving the pair ¸ Á Z ¹
is . Hence, ²# Á# ÁÃÁ# ³ ~ . A similar argument holds for any coordinate
pair.