Page 420 - Advanced Linear Algebra
P. 420

404    Advanced Linear Algebra



            Consider the map  ¢ =  d   ¦ -   defined by

                             ²#Á Ã Á # ³ ~    ²c ³ ´#µ Ä´# µ




                                           :
            Then   is multilinear since


                    ² # b  " Á Ã Á # ³ ~    ²c ³ ´ # b  " µ Ä´# µ






                                        :
                                    ~    ²    c     ³    ²     ´  #  µ  b           ´  "  µ  ³    Ä    ´    #     µ  ()

                                        :

                                    ~      ²c ³ ´# µ Ä´# µ

                                         :

                                        b      ²c ³ ´" µ Ä´#    µ


                                             :
                                    ~   ²# Á Ã Á # ³ b   ²" Á # Á Ã Á # ³





            and similarly for any coordinate position.
            To see that   is alternating, and  therefore  antisymmetric  since  char ²  -  ³  £  ,

            suppose for instance that #~ #      . For any permutation   :      , let
                                         Z    ~²    ³

                  Z

            Then  %~ %   for % £ Á    and

                                    Z     ~       and  Z     ~
            Hence,    Z    £  . Also, since     ²  Z  Z  ~    ³  , if the sets     Á   ¸  Z  ¹   and     Á   ¸  Z  ¹   intersect,
            then they are identical. Thus, the distinct sets ¸Á   Z ¹   form a partition of :   . It
            follows that

               ²#Á #Á #Á Ã Á # ³ ~    ²c ³ ´#µ ´#µ Ä´# µ








                                    :
                                                        Z


                 ~        >  ²c ³ ´# µ ´# µ Ä´# µ         b ²c ³ ´# µ ´# µ Ä´# µ         Z  ?


                                                                 Z

                                                            Z





                   pairs ¸Á ¹
                         Z

            But
                                 ´#µ ´#µ                ~ ´#µ ´#µ        Z     Z

            and since ²c ³ ~ c²c ³    Z , the sum of the two terms involving the pair ¸ Á   Z ¹

            is  . Hence,  ²# Á# ÁÃÁ# ³ ~   . A similar argument holds for any coordinate



            pair.
   415   416   417   418   419   420   421   422   423   424   425