Page 421 - Advanced Linear Algebra
P. 421

Tensor Products   405



            Finally,

                             ² Á Ã Á   ³ ~    ²c ³ ´ µ Ä´  µ




                                           :
                                       ~    ²    c     ³          Ä  Á        Á

                                           :
                                       ~
            Thus, the map   is the unique antisymmetric  -linear form on  =  d   for which


             ²  Á Ã Á   ³ ~  .


            Under the ordered basis ; ~²  Á Ã Á   ³ , we can view   as the space -    of
                                                          =


            coordinate vectors and view  =  d   as the space  4    ²  -  ³   of  d         matrices, via the
            isomorphism
                                          v  ´# µ     Ä  ´# µ   y
                             ²# ÁÃÁ# ³ ª     Å         Å

                                          w               z
                                            ´# µ     Ä ´# µ

            where all coordinate matrices are with respect to  .
                                                   ;
            With this viewpoint,   becomes an antisymmetric  -form on the columns of a


            matrix (~ ²  ³  given by
                         Á
                                 ²(³ ~    ²c ³          Á  Ä       Á
                                       :
            This is called the determinant  of the matrix  .
                                                (
            Properties of the Determinant
            Let us explore some of the properties of the determinant function.
            Theorem 14.21 If ( 4 ²-³ , then

                                                 !
                                       ²(³ ~  ²( ³
            Proof. We have
                              ²(³ ~    ²c ³          Á  Ä       Á
                                     :
                                  ~     ²    c     ³    c     c   Ä       Á      c   Á
                                     c
                                      :
                                  ~    ²  c      ³       Ä         Á    Á
                                     :
                                       !
                                  ~ ²( ³
            as desired.…
   416   417   418   419   420   421   422   423   424   425   426