Page 514 - Advanced Linear Algebra
P. 514

498    Advanced Linear Algebra



             )
            3   Let         K   and    !  ³    < ²  . Then as operators,
                                               c   ²!³   ~     ²!³


             )
            4   Let         K   and    !  ³    < ²  . Then
                                                            ² ²!³³ ~  ²!³
                           )
            Proof. We prove 3  as follows. For any  ²!³  <  and  ²%³  7  ,
                       º ²!³“    d   ²!³ ²%³»~º´   d   ²!³µ ²!³“ ²%³»
                                                      d
                                        ~ º   d  ´ ²!³²   c     ³  ²!³µ “  ²%³»
                                                  ³  ²!³ “  ²%³»
                                        ~ º ²!³²   c  d
                                               ³  ²!³ “  ²!³  ²%³»
                                        ~ º²   c  d
                                        ~ º ²!³ “    c   ²!³  ²%³»

                                         )                           )
            which gives the desired result. Part 4  follows immediately from part 3  since
            is composition by  .…

            Sheffer Operators
            If  ²%³  is Sheffer for ² Á  ³ , then the linear operator        Á      defined by


                                        Á  ²% ³ ~   ²%³

            is  called  a  Sheffer operator . Sheffer operators are closely related to umbral
            operators, since if  ²%³  is associated with  ²!³ , then

                                      c           c
                                ²%³ ~   ²!³  ²%³ ~   ²!³       %


            and so
                                            c       Á  ~  ²!³
            It follows that the Sheffer operators form a group with composition

                                      Á  k   Á  ~  c       ²!³     c       ²!³
                                               c
                                          c
                                       ~   ²!³  ² ²!³³
                                       ~ ´ ²!³ ² ²!³³µ c      k
                                       ~     h² k ³Á k
            and inverse
                                         c   ~      ² ³Á
                                        Á
                                              c
            From this, we deduce that the umbral composition of Sheffer sequences is a
            Sheffer sequence. In particular, if   ²%³  is Sheffer for  ² Á  ³   and


            !²%³ ~ !      '  Á     %  is Sheffer for  ² Á  ³, then
   509   510   511   512   513   514   515   516   517   518   519