Page 519 - Advanced Linear Algebra
P. 519

The Umbral Calculus   503



            Proof. We have

              º  ²!³“       d      ²!³  ²%³»~º´      d      ²!³µ  ²!³“  ²%³»


                                ~ º      d  ´ ²!³  ²!³µ c  ²!³         d    ²!³ “   ²%³»


                                ~ º    d  ´ ²!³  ²!³µ “   ²%³» c º  ²!³      c     ²!³ “   ²%³»



                                ~º  ²!³ “  ²!³   ²%³» c º    c  ²!³ “  ²!³  ²%³»


                                                        d

                                ~ º  ²!³ “  ²!³   ²%³» c º           ²!³ “  ²!³  ²%³»



                                ~ º  ²!³ “  ²!³   ²%³» c º  ²!³ “          ²!³  ²%³»

            from which the result follows.…
                                            %

            If  ²!³ ~ ! , then  is multiplication by   and   d  is the derivative with respect to


            ! and so the previous result becomes
                                    Z
                                     ²!³ ~  ²!³% c % ²!³
            as operators on  . The right side of this is called the Pincherle derivative  of
                         F
                          (
            the operator  ²!³ .  See [104].)
            Sheffer Shifts
            Recall that the linear map
                                      Á  ´  ²%³µ ~    b  ²%³

            where    ²%³   is  Sheffer for  ² ²!³Á  ²!³³  is called a Sheffer shift. If    ²%³  is


            associated with  ²!³ , then  ²!³  ²%³ ~   ²%³  and so


                               c                 c
                               ²!³   b  ²%³ ~    Á  ´ ²!³  ²%³µ

            and so
                                           c      Á  ~   ²!³  ²!³

            From Theorem 19.26, the recurrence formula and the chain rule, we have
                                   c      Á  ~  ²!³  ²!³

                                   c
                                ~   ²!³´ ²!³        c  d  ²!³µ

                                ~          c  ²  !  ³  C    c     ²  !  ³
                                ~          c  ²  !  ³  C    c     ²  !  ³
                                ~       c  ²  !  ³  C    c  !  C  !       ²  !  ³

                                                         Z
                                                       c
                                             c
                                     Z
                                                   Z

                                ~ %´  ²!³µ c     c   ²!³´  ²!³µ   ²!³
                                        Z
                                        ²!³
                                ~% c       ?
                                  >
                                             Z
                                        ²!³   ²!³
            We have proved the following.
   514   515   516   517   518   519   520   521   522   523   524