Page 520 - Advanced Linear Algebra
P. 520

504    Advanced Linear Algebra



                                be a Sheffer shift. Then
            Theorem 19.27 Let    Á
                           Z
                           ²!³
                     <
            1)    Á  ~% c    =
                               Z
                           ²!³    ²!³
                              Z
                               ²!³
            2)     ²  b   %  ³  ~  %  c<    =  ²  %    ³                   …
                                  Z
                               ²!³    ²!³
            The Transfer Formulas
            We conclude with a pair of formulas  for  the  computation  of  associated
            sequences.
                          (
            Theorem 19.28  The transfer formulas ) Let  ²%³  be the associated sequence

            for  ²!³ . Then
                                c c
            1)  ²%³ ~   ²!³4 Z   ²!³  5  %

                             !
                             c
            2)  ²%³ ~ %4   ²!³ 5  %  c

                           !
                                  )
                                        )
            Proof. First we show that 1  and 2  are equivalent. Write  ²!³ ~  ²!³°! . Then
                       Z
                        ²!³ ²!³ c c       Z   c c
                                 % ~ ´! ²!³µ  ²!³
                                                  %
                                                           %
                                   ~  ²!³ c      Z     c c
                                           % b !  ²!³ ²!³
                                   ~  ²!³ c      Z     c c   c
                                                           %
                                           % b    ²!³ ²!³
                                   ~ ²!³ c         c  Z  c
                                           % b ´ ²!³
                                                     µ %
                                           % c ´ ²!³
                                   ~ ²!³ c         c  %c% ²!³ c  µ%  c
                                            %
                                   ~% ²!³ c   c
            To prove 1 , we verify the operation conditions for an associated sequence for
                     )
                                Z
            the sequence    ²%³ ~   ²!³ ²!³ c     c     %    . First, when    ‚    the fourth equality

            above gives


                                          Z

                         º! “   ²%³» ~ º! “   ²!³ ²!³ c     c     % »


                                                         Z

                                   ~º! “  ²!³ c     % c ´ ²!³ c     µ %    c     »

                                   ~ º ²!³ c   “ % » c º´ ²!³ c  Z   c  »
                                                         µ “ %


                                   ~ º ²!³ c   “ % » c º ²!³ c   “ % »
                                   ~


            If   ~   , then º!“   ²%³» ~   , and so in general, we have º!“   ²%³» ~      Á      as


            required.
            For the second required condition,
                                              Z
                                ²!³  ²%³ ~  ²!³  ²!³ ²!³ c     c     %

                                              Z
                                       ~ ! ²!³  ²!³ ²!³ c     c     %
                                            Z
                                       ~    ²!³ ²!³ c     c     %    c
                                       ~    c  ²%³
            Thus,  ²%³  is the associated sequence for  ²!³ .…
   515   516   517   518   519   520   521   522   523   524   525