Page 83 - Advanced Linear Algebra
P. 83

Linear Transformations  67







                            vy                  vy                    vy

              ´+² ³µ~ ´ µ~        ´+²%³µ~ ´ µ~      ,  Á ´+²% ³µ~ ´ %µ~
                   9
                                       9
                         9
                                                            9
                                                                   9
                                             9
                            wz                  wz                    wz



            and so
                                          v           y
                                    ´+µ ~
                                      8
                                          w           z
            Hence, for example, if  ²%³ ~   b%b %   , then


                                             v          yvy   vy
                      ´+ ²%³µ ~ ´+µ ´ ²%³µ ~                ~
                            9
                                         8
                                   8
                                             w          zwz   wz


            and so + ²%³ ~   b  % .…
            The following result shows  that  we  may work equally well with linear
            transformations or with the matrices that represent them  with respect to fixed
                                                           (
            ordered bases  8   and  9  ) . This applies not only to  addition  and  scalar
            multiplication, but also to matrix multiplication.

            Theorem 2.15 Let   and  >   be finite-dimensional vector spaces over  , with
                                                                      -
                            =
            ordered bases  ~²  Á Ã Á   ³  and  ~²  Á Ã Á   ³ , respectively.
                        8
                                         9




             )
            1   The map  B¢²= Á > ³ ¦  C  Á  ²-³  defined by
                                           ²³ ~ ´  µ 89,
               is an isomorphism and so  B     C²= Á > ³ š   Á  ²-³ . Hence,
                            dim² ²= Á > ³³~  dim² C   Á  ²-³³~  d
                                B
             )
                                                         :
                                                 8
                                                    9

                                    B

                     B
            2   If  ²<Á = ³  and  ²= Á > ³  and if  ,   and   are ordered bases for
                 ,
               <=  and  >, respectively, then
                                     ´  µ   8:,  ~  ´  µ   9 :,  ´  µ   89,
                                                      )
                                           (
               Thus, the matrix of the product  composition       is the product of the
               matrices of   and  . In fact, this is the primary motivation for the definition


               of matrix multiplication.
            Proof. To see that   is linear, observe that for all  ,






                          ´  b ! µ 89 Á    ´  µ ~ ´²  b ! ³²  ³µ 9
                                      8




                                        ~´  ²  ³ b ! ²  ³µ 9



                                        ~  ´ ²  ³µ b !´ ²  ³µ 9 9
                                        ~ ´ µ 89 Á    ´  µ b !´ µ 89 Á    ´  µ 8
                                                  8


                                        ~² ´ µ 89 Á     b !´ µ 89 Á     ³´  µ 8
   78   79   80   81   82   83   84   85   86   87   88