Page 15 - Advanced engineering mathematics
P. 15

Contents      ix


                                                   14.3.3  The Shannon Sampling Theorem 485
                                                   14.3.4  Low-Pass and Bandpass Filters 487
                                              14.4 Fourier Cosine and Sine Transforms  490
                                              14.5 The Discrete Fourier Transform  492
                                                   14.5.1  Linearity and Periodicity of the DFT  494
                                                   14.5.2  The Inverse N-Point DFT  494
                                                   14.5.3  DFT Approximation of Fourier Coefficients 495
                                              14.6 Sampled Fourier Series  498
                                              14.7 DFT Approximation of the Fourier Transform  501

                               CHAPTER 15 Special Functions and Eigenfunction Expansions    505
                                              15.1 Eigenfunction Expansions  505
                                                   15.1.1  Bessel’s Inequality and Parseval’s Theorem 515
                                              15.2 Legendre Polynomials  518
                                                   15.2.1  A Generating Function for Legendre Polynomials 521
                                                   15.2.2  A Recurrence Relation for Legendre Polynomials  523
                                                   15.2.3  Fourier-Legendre Expansions  525
                                                   15.2.4  Zeros of Legendre Polynomials 528
                                                   15.2.5  Distribution of Charged Particles 530
                                                   15.2.6  Some Additional Results 532
                                              15.3 Bessel Functions  533
                                                   15.3.1 The Gamma Function  533
                                                   15.3.2 Bessel Functions of the First Kind 534
                                                   15.3.3 Bessel Functions of the Second Kind  538
                                                   15.3.4  Displacement of a Hanging Chain 540
                                                   15.3.5  Critical Length of a Rod  542
                                                   15.3.6  Modified Bessel Functions  543
                                                   15.3.7  Alternating Current and the Skin Effect 546
                                                   15.3.8  A Generating Function for J ν (x)  548
                                                   15.3.9 Recurrence Relations  549
                                                   15.3.10  Zeros of Bessel Functions  550
                                                   15.3.11  Fourier-Bessel Expansions  552
                                                   15.3.12  Bessel’s Integrals and the Kepler Problem 556



                                 PART   5     Partial Differential Equations  563




                               CHAPTER 16 The Wave Equation       565
                                              16.1 Derivation of the Wave Equation 565
                                              16.2 Wave Motion on an Interval 567
                                                   16.2.1  Zero Initial Velocity  568
                                                   16.2.2  Zero Initial Displacement  570
                                                   16.2.3  Nonzero Initial Displacement and Velocity 572
                                                   16.2.4 Influence of Constants and Initial Conditions  573
                                                   16.2.5  Wave Motion with a Forcing Term  575





                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                    October 15, 2010  17:43   THM/NEIL   Page-ix         27410_00_fm_pi-xiv
   10   11   12   13   14   15   16   17   18   19   20