Page 244 - Advances in Biomechanics and Tissue Regeneration
P. 244
240 11. ANALYSIS OF THE BIOMECHANICAL BEHAVIOR OF INTRAMEDULLARY NAILING
[34] Roland DG Corporation, Dr PICZA 3, User Manual, http://support.rolanddga.com/docs/documents/departments/technical%20services/
manuals%20and%20guides/drpicz3e.pdf, 2001. Accessed 28 June 2018.
[35] Roland DG Corporation, Pixform Pro II Software, http://support.rolanddga.com/docs/Documents/departments/Technical%20Services/
Manuals%20and%20Guides/RU_PixformProII.pdf, 2008. Accessed 28 June 2018.
®
[36] Siemens, I-deas 11 NX Series PLM software, http://www.plm.automation.siemens.com/, 2013. Accessed 28 June 2018.
®
[37] Rhinoceros software, https://www.rhino3d.com/es/, 2018. Accessed 28 June 2018.
[38] Materialise Mimics software, https://www.materialise.com/es/medical/software/mimics, 2018. Accessed 28 June 2018.
[39] Fortran software, http://www.fortran.com/the-fortran-company-homepage/fortran-tools-libraries-and-application-software/, 2018. Accessed
28 June 2018.
[40] L.E. Claes, H.J. Wilke, P. Augat, S. Rubenacker, K.J. Margevicius, Effect of dynamization on gap healing of diaphyseal fractures under external
fixation, Clin. Biomech. 10 (1995) 227–234.
[41] A. Herrera, J.J. Panisello, E. Ibarz, J. Cegonino, J.A. Puertolas, L. Gracia, Long-term study of bone remodelling after femoral stem: a comparison
between DEXA and finite element simulation, J. Biomech. 40 (2007) 3615–3625.
[42] Loading of orthopaedic implants, OrthoLoad, 2018. https://orthoload.com/. Accessed 28 June 2018.
[43] H. Weinans, R. Huiskes, H.J. Grootenboer, Effects of fit and bonding characteristics of femoral stems on adaptative bone remodeling, J. Biomech.
Eng. 116 (4) (1994) 393–400.
[44] J. Kerner, R. Huiskes, G.H. van Lenthe, H. Weinans, B. van Rietbergen, C.A. Engh, A.A. Amis, Correlation between pre-operative periposthetic
bone density and post-operative bone loss in THA can be explained by strain-adaptative remodeling, J. Biomech. 32 (1999) 695–703.
[45] J.A. Grant, N.E. Bishop, N. Gotzen, C. Sprecher, M. Honl, M.M. Morlock, Artificial composite bone as a model of human trabecular bone: the
implant-bone interface, J. Biomech. 40 (2007) 1158–1164.
[46] S. Eberle, C. Gerber, G. von Oldenburg, S. Hungerer, P. Augat, Type of hip fracture determines load share in intramedullary osteosynthesis,
Clin. Orthop. Rel. Res. 467 (2009) 1972–1980.
[47] S.H. Chen, M.C. Chiang, C.H. Hung, S.C. Lin, H.W. Chang, Finite element comparison of retrograde intramedullary nailing and locking plate
fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty, Knee 21 (2014) 224–231.
[48] S. Samiezadeh, P. Tavakkoli Avval, Z. Fawaz, H. Bougherara, Biomechanical assessment of composite versus metallic intramedullary nailing
system in femoral shaft fractures: a finite element study, Clin. Biomech. 29 (2014) 803–810.
[49] Abaqus software, Dassault Systèmes, https://www.3ds.com/es/productos-y-servicios/simulia/productos/abaqus/, 2018. Accessed 28 June
2018.
[50] T. Yamaji, K. Ando, S. Wolf, P. Augat, L. Claes, The effect of micromovement on callus formation, J. Orthop. Sci. 6 (2001) 571–575.
[51] P. Augat, J. Burger, S. Schorlemmer, T. Henke, M. Peraus, L. Claes, Shear movement at the fracture site delays healing in a diaphyseal fracture
model, J. Orthop. Res. 21 (2003) 1011–1017.
I. BIOMECHANICS