Page 316 - Advances in Eco-Fuels for a Sustainable Environment
P. 316

Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel  273

               seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica. Fuel 2014;
               120(1):46–52.
           [72] Pourali O, Asghari FS, Yoshida H. Sub-critical water treatment of rice bran to produce
               valuable materials. Food Chem 2009;115:1–7.
           [73] Huang W,Kim J.Bioresource technology simultaneous cell disruption and lipidextraction in
               a microalgal biomass using a nonpolar tertiary amine. Bioresour Technol 2017;232:142–5.
           [74] Wu C, Xiao Y, Lin W, Li J, Zhang S, Zhu J, et al. Bioresource technology aqueous enzy-
               matic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Bio-
               resour Technol 2017;223:312–6.
           [75] Krohn BJ, Mcneff CV, Yan B, Nowlan D. Bioresource technology production of algae-
                                                         `
               based biodiesel using the continuous catalytic Mcgyan O process. Bioresour Technol
               2011;102(1):94–100.
           [76] Park J, Park MS, Lee Y, Yang J. Bioresource technology advances in direct trans-
               esterification of algal oils from wet biomass. Bioresour Technol 2015;184:267–75.
           [77] Daniel M, Luna G, De ML, Doliente T, Ido AL, Chung T. Journal of environmental chem-
               ical engineering in situ transesteri fi cation of Chlorella sp. Microalgae using LiOH-
               pumice catalyst. J Environ Chem Eng 2017;5(3):2830–5.
           [78] Chen C, Huang C, Ho K, Hsiao P, Wu M. Bioresource technology biodiesel production
               from wet microalgae feedstock using sequential wet extraction/transesterification and
               direct transesterification processes. Bioresour Technol 2015;194:179–86.
           [79] Im H, Lee H, Park MS, Yang J, Lee JW. Bioresource technology concurrent extraction and
               reaction for the production of biodiesel from wet microalgae. Bioresour Technol
               2014;152:534–7.
           [80] Im H, Kim B, Lee JW. Bioresource technology concurrent production of biodiesel and
               chemicals through wet in situ transesterification of microalgae. Bioresour Technol
               2015;193:386–92.
           [81] Kim T, Suh WI, Yoo G, Mishra SK, Farooq W, Moon M, et al. Bioresource technology
               development of direct conversion method for microalgal biodiesel production using wet
               biomass of Nannochloropsis salina. Bioresour Technol 2015;191:438–44.
           [82] Skorupskaite V, Makareviciene V, Gumbyte M. Opportunities for simultaneous oil extrac-
               tion and transesterification during biodiesel fuel production from microalgae: a review.
               Fuel Process Technol 2016;150:78–87.
           [83] Salam KA, Velasquez-orta SB, Harvey AP. A sustainable integrated in situ transesteri fi
               cation of microalgae for biodiesel production and associated coproduct – a review. Renew
               Sustain Energy Rev 2016;65:1179–98.
           [84] Kim B, Im H, Lee JW. Bioresource technology in situ transesterification of highly wet
               microalgae using hydrochloric acid. Bioresour Technol 2015;185:421–5.
           [85] Lo ´pez EN, Medina AR, Cerda ´n LE, Gonza ´lez Moreno PA, Macı ´as Sa ´nchez MD,
               Grima EM. Biomass and bioenergy fatty acid methyl ester production from wet microalgal
               biomass by lipase-catalyzed direct transesterification. Biomass Bioenergy 2016;93:6–12.
           [86] Li Y, Lian S, Tong D, Song R, Yang W, Fan Y, et al. One step production of biodiesel from
               Nannochloropsis sp. on solid base Mg-Zr catalyst. Appl Energy 2011;88(10):3313–7.
           [87] Zhang Y, Li Y, Zhang X, Tan T. Biodiesel production by direct transesterification of
               microalgal biomass with cosolvent. Bioresour Technol 2015;196:712–5.
           [88] Sivaramakrishnan R, Incharoensakdi A. Direct transesterification of Botryococcus sp.
               catalysed by immobilized lipase: ultrasound treatment can reduce reaction time with high
               yield of methyl ester. Fuel 2017;191:363–70.
           [89] Cheng J, Qiu Y, Huang R, Yang W, Zhou J, Cen K. Biodiesel production from wet micro-
               algae by using graphene oxide as solid acid catalyst. Bioresour Technol 2016;221:344–9.
           [90] Tsigie YA, Huynh LH, Ismadji S, Engida AM, Ju YH. In situ biodiesel production from
               wet Chlorella vulgaris under subcritical condition. Chem Eng J 2012;213:104–8.
   311   312   313   314   315   316   317   318   319   320   321