Page 318 - Advances in Eco-Fuels for a Sustainable Environment
P. 318
Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel 275
[109] Wagemaker TAL, Campos PMBGM, Fernandes AS, Rijo P, Nicolai M, Roberto A, et al.
Unsaponifiable matter from oil of green coffee beans: cosmetic properties and safety
evaluation. Drug Dev Ind Pharm 2016;42:1695–9.
[110] Jin Q, Yang L, Poe N, Huang H. Integrated processing of plant-derived waste to produce
value-added products based on the biorefinery concept. Trends Food Sci Technol
2018;74:119–31.
[111] Kamm B, Kamm M. Principles of biorefineries. Appl Microbiol Biotechnol 2004;
64(2):137–45.
[112] Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpur MR. Dimethyl ether: A review of tech-
nologies and production challenges. Chem Eng Process 2014;82:150–72.
[113] Niawanti H, Zullaikah S. Removal of bioactive compound (γ-oryzanol) from rice bran
oil-based biodiesel using deep eutectic solvent. Chem Eng Trans 2017;56:1513–8.
[114] Parniakov O, Barba FJ, Grimi N, Marchal L, Jubeau S, Lebovka N, et al. Pulsed elecric
field assisted extraction of nutritionally valuable compounds from microalgae
Nannochloropsis spp. using the binary mixture of organic solvents and water. Innov Food
Sci Emerg Technol 2015;27:79–85.
[115] Kim T, Oh Y, Lee JW, Keun Y. Levulinate production from algal cell hydrolysis using
in situ transesterification. Algal Res 2017;.
[116] Sch€ uler LM, Schulze PSC, Pereira H, Barreira L, Leo ´n R, Varela J. Trends and strategies
to enhance triacylglycerols and high-value compounds in microalgae. Algal Res
2017;25:263–73. Internet.
[117] Gong M, Bassi A. Carotenoids from microalgae: a review of recent developments. Bio-
technol Adv 2016;34(8):1396–412.
[118] Yen H, Hu I, Chen C, Ho S, Lee D, Chang J. Bioresource Technology microalgae-based
biorefinery – from biofuels to natural products. Bioresour Technol 2013;135:166–74.
[119] Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ. Bioresource technology
characterization of a new zeaxanthin producing strain of Chlorella saccharophila iso-
lated from New Zealand marine waters. Bioresour Technol 2013;143:308–14.
[120] Khanra S, Mondal M, Halder G, Tiwari ON, Gayen K, Bhowmick TK. Downstream
processing of microalgae for pigments, protein and carbohydrate in industrial applica-
tion: a review. Food Bioprod Process 2018;110:60–84.
[121] Jaeschke DP, Rech R, Marczak LDF, Mercali GD. Ultrasound as an alternative technol-
ogy to extract carotenoids and lipids from Heterochlorella luteoviridis. Bioresour
Technol 2017;224:753–7.
[122] Damergi E, Schwitzgu ebel J, Refardt D, Sharma S, Holliger C, Ludwig C. Extraction of
carotenoids from Chlorella vulgaris using green solvents and syngas production from
residual biomass. Algal Res 2017;25:488–95.
ˆ
[123] Feller R, Matos AP, Mazzutti S, Moecke EHS, Tres MV, Derner RB, et al. Polyunsat-
urated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine
microalgae extracts obtained by supercritical CO 2 and subcritical n-butane. J Supercrit
Fluids 2018;133:437–43.
[124] Liau B, Shen C, Liang F, Hong S, Hsu S. Supercritical fluids extraction and anti-solvent
purification of carotenoids from microalgae and associated bioactivity. J Supercrit Fluids
2010;55(1):169–75.
[125] Macı ´as-sa ´nchez MD, Mantell C, Rodrı ´guez M, De EM, Lubia ´n LM, Montero O. Com-
parison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlo-
rophyll a from Dunaliella salina. Talanta 2009;77:948–52.
[126] Azad AK. Biodiesel from mandarin seed oil: a surprising source of alternative fuel.
Energies 2017;10(11):1689. https://doi.org/10.3390/en10111689.