Page 352 - Advances in Eco-Fuels for a Sustainable Environment
P. 352
Thermal depolymerization of biogas digestate 307
[46] Audo M, Paraschiv M, Queffelec C, Louvet I, Hemez J, Fayon F, et al. Subcritical hydro-
thermal liquefaction of microalgae residues as a green route to alternative road binders.
ACS Sustain Chem Eng 2015;3:583–90.
[47] Wang W, Xu Y, Wang X, Zhang B, Tiana W, Zhang J. Hydrothermal liquefaction of
microalgae over transition metal supported TiO2 catalyst. Bioresour Technol
2018;250:474–80.
[48] Akalın MK, Tekin T, Karag€ oz S. Hydrothermal liquefaction of cornelian cherry stones for
bio-oil production. Bioresour Technol 2012;110:682–7.
[49] Jimeng J, Savage P. Influence of process conditions and interventions on metals content in
biocrude from hydrothermal liquefaction of microalgae. Algal Res 2017;26:131–4.
[50] Yokoyama S, Suzuki A, Murakamit M, Ogi T, Koguchi K, Nakamura E. Liquid fuel pro-
duction from sewage sludge by catalytic conversion using sodium carbonate. Fuel
1987;66:1150–4.
[51] Box G, Hunter J, Hunter W. Statistics for experimenters. Design, innovation and discov-
ery. 2nd ed. Hoboken, NJ: Wiley Interscience; 2005.
[52] Roosta M, Ghaedi M, Asfaram A. Simultaneous ultrasonic-assisted removal of malachite
green and safranin O by copper nanowires loaded on activated carbon: central composite
design optimization. RSC Adv 2015;5:57021–9.
[53] SOCR. F distribution tables. Available from: www.socr.ucla.edu/applets.dir/f_table.
html#FTable0.05; 2016. Accessed 4 April 2018.
[54] Minitab. All statistics and graphs for response optimizer; 2016.
[55] Candioti LV, De Zan MM, Ca ´mara MS, Goicoechea HC. Experimental design and mul-
tiple response optimization. Using the desirability function in analytical methods devel-
opment. Talanta 2014;124:123–38.
[56] Raikova S, Smith-Baedorf H, Bransgrove R, Barlow O, Santomauro F, Wagner JL, et al.
Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal
recovery from microalgae cultivated on acid mine drainage. Fuel Process Technol
2016;219–27.
[57] Santana GCS, Martins PF, de Lima da Silvab N, Batistellab CB, Maciel Filho R, Wolf
Maciel MR. Simulation and cost estimate for biodiesel production using castor oil. Chem
Eng Res Des 2010;88:626–32.
[58] Sinnott RK. Chemical engineering. In: Chemical process design. London: Butterworth–
Heinemann; 1996.
[59] Towler G, Sinnott G. Chemical engineering design: principles, practice and economics of
plant process design. London: Elsevier; 2008.
[60] Sinnot R, Towler G. Chemical engineering design. 5th ed. Burlington, VT: Elsevier; 2009.
[61] chemengonline. Chemical engineering plant cost index. Available from: www.che
mengonline.com; 2017. Accessed 25 December 2017.
[62] Payscale. Chemical plant operator salary. Available from: https://www.payscale.com/
research/US/Job¼Chemical_Plant_Operator/Hourly_Rate. Accessed 31 December 2017.
[63] Zhang Y, Dub e MA, McLean DD, Kates M. Biodiesel production from waste cooking oil.
2. Economic assessment and sensitivity analysis. Bioresour Technol 2003;89:229–40.
[64] Vogel HG. Process development: from the initial idea to the chemical production plant.
Weinheim: Wiley; 2014.
[65] Minowa T, Kondo T, Sudirjo ST. Thermochemical liquefaction of Indonesian biomass
residues. Biomass Bioenergy 1998;14(5/6):517–24.
[66] Welty JR, Wicks CE, Wilson CE, Rorrer GL. Fundementals of momentum, heat and mass
transfer. Wiley; 2008.
[67] Sustainability-Victoria. Energy efficiency best practice guide, pumping systems. Victoria:
Energy Cut; 2015.