Page 112 - Advances in Textile Biotechnology
P. 112
Enzymatic hydrolysis and modifi cation of core polymer fi bres 93
de gooijer j m, scheltus m, lösch h w, staudt r, meuldijk j and koning c e (2004),
‘End group modification of polyamide-6 in supercritical and subcritical fl uids. Part
1: amine end group modification with succinic anhydride’, J Supercrit Fluid, 29,
129–152.
deguchi t, kakezawa m and nishida t (1997), ‘Polyamide biodegradation by lignin-
degrading fungi’, Appl Environ Microb, 63, 329–331.
deguchi t, kitaoka y, kakezawa m and nishida t (1998), ‘Purification and charac-
terization of a polyamide-degrading enzyme’, Appl Environ Microb, 64, 1366–
1371.
donelli i, taddei p, nierstrasz v a and freddi g (2008), ‘Water contact angle and
FTIR study of the surface modifi cation of PET by lipolytic enzyme’, Chem Eng
Trans, 14, 309–314.
donelli i, taddei p, smet p f, poelman d, nierstrasz v a and freddi g (2009),
‘Enzymatic surface modification and functionalization of PET. A water contact
angle, FTIR, and fluorescence spectroscopy study’, Biotechnol Bioeng, 103(5),
845–856.
durán n, rosa m a, d’annibale a and gianfreda l (2002), ‘Applications of laccases
and tyrosinases (phenoloxidases) immobilized on different supports: a review’,
Enzyme Microb Technol, 31, 907–931.
egmond m r and de vlieg j (2000), ‘Fusarium solani pisi cutinase’, Biochimie, 82,
1015–1021.
feuerhack a, alisch-mark m, kisner a, pezzin s h, zimmermann w and andreaus
j (2008), ‘Biocatalytic surface modification of knitted fabrics made of poly(ethylene
terephthalate) with hydrolytic enzymes from Thermobifi da fusca KW3b’, Biocatal
Biotransform, 26(5), 357–364.
fi scher-colbrie g, heumann s and guebitz g (2006), ‘Enzymes for polymer surface
modification’, in J. V. Edwards et al. (ed.), Modifi ed fibres with medical and spe-
cialty applications, Netherlands, Springer.
foerch r and hunter d h (1992), ‘Plasma surface modification of glass fi bre-
reinforced polyamide 6,6’, J Polym Sci, 30, 279.
friedrich j, zalar p, mohorcic m, klun u and krzan a (2007), ‘Ability of fungi to
degrade synthetic polymer polyamide-6’, Chemosphere, 67, 2089–2095.
fujisawa m, hirai h and nishida t (2001), ‘Degradation of polyethylene and polya-
mide-66 by the laccase-mediator system’, J Polym Environ, 9, 103–108.
goddard j m and hotchki j h (2007), ‘Polymer surface modification for the attach-
ment of bioactive compounds’, Prog Polym Sci, 32, 698–725.
gübitz g m and cavaco-paulo a (2003), ‘New substrates for reliable enzymes: enzy-
matic modification of polymers’, Curr Opin Biotechnol, 14(6), 577–582.
gübitz g m and cavaco-paulo a (2008), ‘Enzymes go big: surface hydrolysis and
functionalisation of synthetic polymers’, Trends Biotechnol, 26(1), 32–38.
guillen j g (1986), Fibras de Poliamida, Terrassa, Universitat Politécnica de
Catalunya.
herrera-alonso m, mccarthy t j and jia x (2006), ‘Nylon surface modifi cation: 2.
Nylon-supported composite fi lms’, Langmuir, 22, 1646–1651.
heumann s, eberl a, fi scher-colbrie g, pobeheim h, kaufman f, ribitsch d, cavaco-
paulo a and guebitz g m (2009), ‘A novel aryl acylamidase from Nocardia farci-
nica hydrolyses polyamide’, Biotechnol Bioeng, 102(4), 1003–1011.
heumann s, eberl a, pobeheim h, liebminger s, fi scher-colbrie g, almansa e,
cavaco-paulo a and guebitz g m (2006), ‘New model substrates for enzymes
© Woodhead Publishing Limited, 2010