Page 111 - Advances in Textile Biotechnology
P. 111
92 Advances in textile biotechnology
4.7 References
almansa e, heumann s, eberl a, fi scher-colbrie g, martinkova l, marek j,
cavaco-paulo a and gübitz g m (2008b), ‘Enzymatic surface hydrolysis of PET
enhances bonding in PVC coating’, Biocatal Biotransform, 26(5), 365–370.
almansa e, heumann s, eberl a, kaufmann f, cavaco-paulo a and guebtitz g m
(2008a), ‘Surface hydrolysis of polyamide with a new polyamidase from Beauve-
ria brongniartii’, Biocatal Biotransform, 26(5), 371–377.
alisch-mark m, feuerhack a, muller h, mensak b, andreaus j and zimmermann w
(2004), ‘Biocatalytic modification of polyethylene terephthalate fibres by este-
rases from Actinomycete isolates’, Biocatal Biotransform, 22(5–6), 347.
alisch-mark m, herrmann a and zimmermann w (2006), ‘Increase of the hydrophilic-
ity of polyethylene terephthalate fibres by hydrolases from Thermomonospora
fusca and Fusarium solani f. sp. pisi’, Biotechnol Lett, 28(10), 681.
araújo m and melo e castro e m (1984), Manual de Engenharia Têxtil, Lisboa,
Fundação Calouste Gulbenkian.
araújo r, casal m and cavaco-paulo a (2008), ‘Application of enzymes for textile
fi bres processing’, Biocatal Biotransform, 26(5), 332–349.
araújo r, silva c, o’neill a, micaelo n, guebitz g m, soares c, casal m and cavaco-
paulo a (2007), ‘Tailoring cutinase activity towards polyethylene terephthalate
and polyamide 6,6 fi bers’, J Biotechnol, 128, 849–857.
blencowe a, cosstick k and hayes w (2006), ‘Surface modification of nylon 6,6 using
a carbon insertion approach’, New J Chem, 30, 53–58.
brandi p, d’annibale a, galli c, gentili p and pontes a s (2006), ‘In search for
practical advantages from the immobilization of an enzyme: the case of laccase’,
J Mol Catal B: Enzym, 41, 61–69.
brueckner t, eberl a, heumann s, rabe m and gübtiz, g m (2008), ‘Enzymatic and
chemical hydrolysis of poly(ethylene terephthalate) fabrics’, J Polym Sci A: Polym
Chem, 46, 6435–6443.
buchenska j (1996), ‘Polyamide fibres (PA 6) with antibacterial properties’, J Appl
Polym Sci, 61, 567–576.
burkinshaw s m (1995), Chemical principles of synthetic fi bre dyeing, London,
Blackie Academica & Professional.
carvalho c m l, aires-barros m r and cabral j m s (1998), ‘Cutinase structure,
function and biocatalytic applications’, Electron J Biotechnol, 1(3), 160–173.
carvalho c m l, aires-barros m r and cabral j m s (1999), ‘Cutinase: from molecu-
lar level to bioprocess development’, Biotechnol Bioeng, 66, 17–34.
cavaco-paulo a, carneiro f, silva c, araújo r, guebitz g m, casal m and matamá t
(2005), ‘Method for the modification of polyacrylonitrile fibres containing vinyl
acetate as a co-monomer and polyamide fibres, using a cutinase enzymes’, Patent
WO 2005/040487 A1.
cribbs b m and ogale a a (2003), ‘Hydrolytic degradation of polyamide 66 pile carpet
fi bers’, Text Res J, 73(2), 98–104.
crouzet j, favre-bulle o, jourdat c, le coq a and petre d (2001), ‘Enzymes and
microorganisms having amidase activity for hydrolysing polyamides’, US Patent
6,214,592 B1.
d’annibale a, stazi s r, vinciguerra v and sermanni g g (2000), ‘Oxirane-
immobilized Lentinula edodes laccase: stability and phenolics removal effi ciency
in olive mill wastewater’, J Biotechnol, 77, 265–273.
© Woodhead Publishing Limited, 2010