Page 91 - Advances in Textile Biotechnology
P. 91
70 Advances in textile biotechnology
franssen, e. j. f. 1993, ‘Drug targeting to the kidney with low-molecular-weight
proteins’, Pharmacy World & Science, 15(6), 276–278.
freddi, g., anghileri, a., sampaio, s., buchert, j., monti, p., & taddei, p. 2006,
‘Tyrosinase-catalyzed modification of Bombyx mori silk fi broin: Grafting of
chitosan under heterogeneous reaction conditions’, Journal of Biotechnology,
125(2), 281–294.
gill, i. & ballesteros, a. 2000a, ‘Bioencapsulation within synthetic polymers
(Part 1): sol–gel encapsulated biologicals’, Trends in Biotechnology, 18(7),
282–296.
gill, i. & ballesteros, a. 2000b, ‘Bioencapsulation within synthetic polymers (Part
2): non-sol–gel protein–polymer biocomposites’, Trends in Biotechnology, 18(11),
469–479.
gudelj, m., fruhwirth, g., paar, a., lottspeich, f., robra, k. h., cavaco-paulo, a., &
gübitz, g. m. 2001, ‘A catalase-peroxidase from a newly isolated thermoalkalo-
philic Bacillus sp. with potential for the treatment of textile bleaching effl uents’,
Extremophiles, 5(6), 423–429.
gupta, p. k. & hung, c. t. 1989, ‘Albumin microspheres II: applications in drug deliv-
ery’, Journal of Microencapsulation, 6(4), 463–472.
hattori, m., watabe, a., & takahashi, k. 1995, ‘β-Lactoglobulin protects beta-ionone
related compounds from degradation by heating, oxidation, and irradiation’, Bio-
science Biotechnology and Biochemistry, 59(12), 2295–2297.
heumann, s., eberl, a., fi scher-colbrie, g., pobeheim, h., kaufmann, f., ribitsch, d.,
cavaco-paulo, a., & guebitz, g. m. 2009, ‘A novel aryl acylamidase from Nocardia
farcinica hydrolyses polyamide’, Biotechnology and Bioengineering, 102, 1003–
1011.
hirabayashi, h., nishikawa, m., takakura, y., & hashida, m. 1996, ‘Development and
pharmacokinetics of galactosylated poly-l-glutamic acid as a biodegradable
carrier for liver-specific drug delivery’, Pharmaceutical Research, 13(6),
880–884.
hsieh, d. s. t., langer, r., & folkman, j. 1981, ‘Magnetic modulation of release of
macromolecules from polymers’, Proceedings of the National Academy of Sciences
of the United States of America – Biological Sciences, 78(3), 1863–1867.
hu, b. h. & messersmith, p. b. 2003, ‘Rational design of transglutaminase substrate
peptides for rapid enzymatic formation of hydrogels’, Journal of the American
Chemical Society, 125(47), 14298–14299.
ibrahim, n. a., gouda, m., el shafei, a. m., & abdel-fatah, o. m. 2007. ‘Antimicrobial
activity of cotton fabrics containing immobilized enzymes’. Journal of Applied
Polymer Science, 104, 1754–1761.
jain, r. k. 1989, ‘Delivery of novel therapeutic agents in tumors – physiological bar-
riers and strategies’, Journal of the National Cancer Institute, 81(8), 570–576.
janolino, v. g. & swaisgood, h. e. 2002, ‘Trypsin imobilization on derivatized cel-
lulose beads by biospecific avidin-biotin interaction and characterization of the
immobilized activity’, Journal of Food Biochemistry, 26(2), 119–129.
jeong, s. y., kim, s. w., holmberg, d. l., & mcrea, j. c. 1985, Self-regulating insulin
delivery systems III – in vivo studies. Journal of Controlled Release, 2, 143–152.
joshi, a. t. 1996, Controlled release of volatile substances, US Patent 686730.
jus, s., kokol, v., & guebitz, g. m. 2008, ‘Tyrosinase-catalysed coupling of
functional molecules onto protein fi bres’, Enzyme and Microbial Technology,
42(7), 535–542.
© Woodhead Publishing Limited, 2010