Page 93 - Advances in Textile Biotechnology
P. 93
72 Advances in textile biotechnology
mohamed, s. a., aly, a. s., mohamed, t. m., & salah, h. a. 2008, ‘Immobilization of
horseradish peroxidase on nonwoven polyester fabric coated with chitosan’,
Applied Biochemistry and Biotechnology, 144(2), 169–179.
moldes, c., garcia, p., garcia, j. l., & prieto, m. a. 2004, ‘In vivo immobilization of
fusion proteins on bioplastics by the novel tag BioF’, Applied and Environmental
Microbiology, 70(6), 3205–3212.
molema, g. & meijer, d. k. f. 1994, ‘Targeting of drugs to various blood-cell types
using (neo-)glycoproteins, antibodies and other protein carriers’, Advanced Drug
Delivery Reviews, 14(1), 25–50.
moriyama, k. & yui, n. 1996, ‘Regulated insulin release from biodegradable dextran
hydrogels containing poly(ethylene glycol)’, Journal of Controlled Release, 42(3),
237–248.
munjal, n. & sawhney, s. k. 2002, ‘Stability and properties of mushroom tyrosinase
entrapped in alginate, polyacrylamide and gelatin gels’, Enzyme and Microbial
Technology, 30(5), 613–619.
narayani, r. & rao, k. p. 1996, ‘Solid tumor chemotherapy using injectable gelatin
microspheres containing free methotrexate and conjugated methotrexate’, Inter-
national Journal of Pharmaceutics, 142(1), 25–32.
opwis, k., knittel, d., & schollmeyer, e. 2004, ‘Quantitative analysis of immobilized
metalloenzymes by atomic absorption spectroscopy’, Analytical and Bioanalytical
Chemistry, 380(7–8), 937–941.
opwis, k., knittel, d., bahners, t., & schollmeyer, e. 2005, ‘Photochemical enzyme
immobilization on textile carrier materials’, Engineering in Life Sciences, 5(1),
63–67.
paar, a., costa, s., tzanov, t., gudelj, m., robra, k.-h., cavaco-paulo, a., & gübitz,
g. m. 2001, ‘Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the
treatment and recycling of textile bleaching effl uents’, Journal of Biotechnology,
89(2–3), 147–153.
park, s. i., daeschel, m. a., & zhao, y. 2004. ‘Functional properties of antimicrobial
lysozyme-chitosan composite fi lms’. Journal of Food Science, 69, M215–M221.
patel, z. s. & mikos, a. g. 2004, ‘Angiogenesis with biomaterial-based drug- and cell-
delivery systems’, Journal of Biomaterials Science-Polymer Edition, 15(6),
701–726.
peschier, l. j. c., bouwstra, j. a., debleyser, j., junginger, h. e., & leyte, j. c. 1993.
‘Water mobility and structure in poly[2-hydroxyethylmethacrylate] hydrogels
by means of the pulsed-field gradient NMR technique’. Biomaterials, 14,
945–952.
phaneuf, m. d., bide, m. j., hannel, s. l., platek, m. j., monahan, t. s., contreras,
m. a., phaneuf, t. m., & logerfo, f. w. 2005, ‘Development of an infection-resistant,
bioactive wound dressing surface’, Journal of Biomedical Materials Research Part
A, 74A(4), 666–676.
pialis, p. & saville, b. a. 1998, ‘Production of l-DOPA from tyrosinase immobilized
on nylon 6,6: enzyme stability and scaleup’, Enzyme and Microbial Technology,
22(4), 261–268.
pialis, p., hamann, m. c. j., & saville, b. a. 1996, ‘l-DOPA production from tyrosinase
immobilized on nylon 6,6’, Biotechnology and Bioengineering, 51(2), 141–147.
piletsky, s., piletska, e., bossi, a., turner, n., & turner, a. 2003, ‘Surface function-
alization of porous polypropylene membranes with polyaniline for protein immo-
bilization’, Biotechnology and Bioengineering, 82(1), 86–92.
© Woodhead Publishing Limited, 2010