Page 52 - Advances in bioenergy the sustainability challenge
P. 52

Escherichia coli. Appl Microbiol Biotechnol 2008, 77:1305–1316.

       20.  Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer
             anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 2011,
             77:2905–2915.


       21.  Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control
             element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 7:222–227.

       22.  Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain
             higher alcohols as biofuels. Nature 2008, 451:86–89.


       23.  Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH. Engineered ketol-
             acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol
             production at theoretical yield in Escherichia coli. Metab Eng 2011, 13:345–352.

       24.  Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC. Biomass as
             feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton
             annual supply. 2005.


       25.  Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2006,
             17:320–326.


       26.  Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in
             engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl
             Microbiol Biotechnol 2009, 84:37–53.

       27.  Jin Y-S, Laplaza JM, Jeffries TW. Saccharomyces cerevisiae engineered for xylose
             metabolism exhibits a respiratory response. Appl Environ Microbiol 2004, 70:6816–6825.

       28.  Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD. Cellodextrin transport

             in yeast for improved biofuel production. Science 2010, 330:84–86.

       29.  Ha S-J, Galazka JM, Rin Kim S, Choi J-H, Yang X, Seo J-H, Louise Glass N, Cate JHD,
             Jin Y-S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and
             xylose fermentation. Proc Natl Acad Sci 2011, 108:504–509.


       30.  Cho H, Cronan JE. Defective export of a periplasmic enzyme disrupts regulation of fatty
             acid synthesis. J Biol Chem 1995, 270:4216–4219.

       31.  Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling
             JD. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.
             Nature 2010, 463:559–562.


       32.  Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: Implications for
             biodiesel production. Metab Eng 2008, 10:333–339.

       33.  Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF. A process for microbial
   47   48   49   50   51   52   53   54   55   56   57