Page 108 - Aerodynamics for Engineering Students
P. 108

Governing equations of fluid mechanics  91

         2.8.2  The derivation of the Navier-Stokes equations
         Restricting  our  derivation  to  two-dimensional  flow,  Eqn  (2.87) with  (2.72a) and
         (2.73) gives
                         dU             dV                  au  av
                 a,,=2p--,      orV=2p--,      CTxy=uyx=p (ay -+-) ax       (2.90)
                         ax             aY
         So the right-hand side of the momentum Eqns (2.66a) becomes
                                        - +p-  -+-
                             aP
                         g,--+2p-   ax  ax     :(;;     3
                             ax
                                       (au)
                           -gx--+p ap   -+- a2U  a2u) +p- a (au -+- av)     (2.91)
                           -
                                 ax    (ax2   ay2     ax ax  ay
                                                            v
                                                        =0, Eqn  (2.46)
         The right-hand side of (2.66b) can be dealt with in a similar way. Thus the momen-
         tum equations (2.66a,b) can be written in the form
                                                        -+-
                        p  -+u-+v-    ay   =pgx--+p    (8x2  9             (2.92a)
                          <g  ax
                                                 ap
                                                 ax
                                 au
                                                             ay2
                                                        a2U
                                 av              ap     a2v  $7
                         p  -+u-+v-   "1   =pg  --+p    -+-                (2.92b)
                          (E  ax  ay          y  ay    (ax2   ay2
         This form of the momentum equations is known as the Navier-Stokes  equations for
         two-dimensional flow. With the inclusion of the continuity equation
                                        au  av
                                        -+-=O                               (2.93)
                                        ax  ay
         we now have three governing equations for three unknown flow variables u, v, p.
           The Navier-Stokes  equations for three-dimensional incompressible flows are given
         below:
                                     au  av  aw
                                     -+-+-=O                                (2.94)
                                     ax  ay  az

                  au    au    au    au         ap     azU  8%   aZU
                        ax  ay  az
                                              ax +  (32 + ayz + 32)
                p(at  + u-  + v-  + w -)  = pg,  - -                       (2.95a)
                                                     aZv
                        av  av         =pgy--+p  -++++)         azv
                                              ap
                p  -+u-+v-+w-                              a2              (2.95b)
                 (E  ax  ay         aZ        ay    (ax2   ay2   az2
                       aw  aw                 ap     a2W  a2W    a2W
               p                       =pgz---+p  -+-+-)                   (2.95~)
                                              az    6x2  ay2     az2

           2.9  Properties of the Navier-Stokes  equations

         At first sight the Navier-Stokes  equations, especially the three-dimensional version,
         Eqns (2.95), may appear rather  formidable. It is important  to  recall that they  are
         nothing more than the application of Newton's  second law of motion to fluid flow.
   103   104   105   106   107   108   109   110   111   112   113