Page 264 - Aerodynamics for Engineering Students
P. 264

---                                  Finite wing theory  247


                                     V
                                         nA,  sin ne
                           ~v=l"P                 4sVCA,  sin n8 s sin 8 de
                                           I            r          dz
                              = pV22 L"  nA,  sin 8    A,  sin ne de

             The integral becomes



             This can be demonstrated by multiplying out the first three (say) odd harmoni  thu
                      rr
                        (A1sin8+3A3sin38+5Assin58)(A1 sin8+A3sin38+ Assin8)d8

                   = L"{A;  sin2 8 + 3A:  sin2 8 + 5A:  sin2 8 +   sin8sin38and

                    other like terms which are products of  different multiples of 81) df3

             On carrying out the integration from 0 to 7r all terms other than the squared terms
             vanish leaving

                           I  = L"(Af sin2 8 + 3Az sin2 38 + 5A:  sin2 58 +  .)dB

                              7T
                                                      7r
                            =-[A;+3A:+5A:+..-]      =2cnAi
                               2
             This gives
                                                           1
                                 DV = 4pV2?ZcnAi = C,-pV2S
                                             2             2
             whence
                                        CDv = .rr(AR)                           (5.49)

             From Eqn (5.47)


















                                                                                (5.50)
   259   260   261   262   263   264   265   266   267   268   269