Page 113 - Aeronautical Engineer Data Book
P. 113

Basic fluid mechanics     89
      where:
      µ  = velocity parallel to the surface
      y  = perpendicular distance from the surface
       
 = boundary layer thickness
         = mainstream velocity
      U 1
      �                       1
      u = velocity parameters u/U (non-dimensional)
      �
      y = distance parameter y/  (non-dimensional)
        Boundary layer equations of turbulent flow:
                  �
            ∂u   ∂u �
   ∂p      ∂
             �
                          �
         �
 �
          u    +    = –    +
                              ∂y
                         ∂x
            ∂x
                 ∂y
             ∂u
              �
                   �
                  �
                     �
          = µ   –  u��v' �
                    '
             ∂y
        ∂p
         �
          = 0
        ∂y
        ∂u       ∂ �
         �
          +    = 0
        ∂x    ∂y
      5.5 Isentropic flow
      For flow in a smooth pipe with no abrupt
      changes of section:
                              d     du   dA
        continuity equation           = 0+   +
                                   u     A
        equation of momentum
        conservation         –dpA = (A u)du
        isentropic relationship   p = c   k
                                  dp
                              2
        sonic velocity       a =
                                  d
      These lead to an equation being derived on the
      basis of mass continuity:
             dp        du
        i.e.     = – M 2
                        u
        or
                  d   �
 du
               2
             M =
                  d    u
   108   109   110   111   112   113   114   115   116   117   118