Page 303 - Aeronautical Engineer Data Book
P. 303

Appendix 2:
      Aircraft response transfer
      functions









      Table A2.1 Longitudinal response transfer functions
        is elevator input.

                                            2
                                     4
                                         3
      Common denominator polynomial ∆(s) = as + bs + cs +
      ds + e
                ˚
      a   mI y  (m – Z ˚ )
                 w
                  ˚  ˚
                            ˚
                                        ˚
            ˚  ˚
                               ˚
      b   I y  (X u Z w˚ – X w˚  Z u ) – mI Y  (X + Z w ) – mM w˚ (Z q  +
                            u
                      ˚
                ˚
         mU e ) – mM q  (m – Z ˚ )
                       w
                                     ˚
            ˚  ˚
                         ˚
                           ˚
                  ˚  ˚
                                  ˚
                               ˚
      c   I y  (X u Z w˚ – X w Z u ) + (X M ˚  – X M u )(Z q  + mU e )
                            w
                          u
                                w
                    ˚
           ˚
              ˚
                                          ˚
                ˚
                                 ˚  ˚
                           ˚  ˚
                      ˚
         + Z u  (X w˚  M q  – X M ˚ ) + (X M – X M u )(m – Z ˚ )
                                           w
                                  q
                               q
                       w
                     q
                            u
             ˚  ˚
                                 ˚
                      ˚
                              ˚
                                    ˚  ˚
                   ˚
         + m(M q Z w  – M w Z q ) + mW e  (M w˚  Z u  – M u  Z w˚ )
                        ˚
            2 ˚
         + m (M ˚  g sin   – u e  M w )
              w
                    e
          ˚
                ˚
            ˚
                   ˚
                      ˚
      d  (X u  M w  – X w M u )(Z q  + mU e )
              ˚
                                         ˚  ˚
                  ˚
            ˚
                    ˚
                                   ˚  ˚
                               ˚
                       ˚
         + (M u  Z w  – M w  Z u )(X q  mW e ) + M q  (X w Z u – X u Z w )
                  ˚  ˚   ˚    ˚            ˚  ˚
         + mg cos  e  (M w˚  Z u  + M u  (m – Z ˚ )) + mg sin   e  (X w˚  M uw
           ˚  ˚
                   ˚
         – X u M w  + mM w )
                           ˚
                         ˚
                                       ˚
                                         ˚
                  ˚
                     ˚
         + mg sin   (X w M u  – X u  M w ) + mg cos  (M w  Z u  –
                                     e
                e
          ˚  ˚
         M u Z w )
                 ˚
                                     ˚
                                        ˚
                       ˚  ˚
                   ˚
      e   mg sin   (X w M u  – X u M w ) + mg cos  (M w  Z u  –
                                   e
               e
          ˚  ˚
         M u Z w )

                                  2
                              2
      Numerator polynomial N 3 (s) = as + bs + cs + d
              ˚
                        ˚
                  ˚
            ˚
      a   I y  (X ˚  Z    + X    (m – Z ˚ ))
            w
                        w
               ˚
                              ˚
                        ˚
          ˚
      b   X    (–I y  Z w  + mU e ) – M q  (m – Z ˚ ))
                               w
                             ˚
                   ˚
               ˚
                         ˚
                      ˚
           ˚
         + Z    (I y  X w  – X w˚  M q  + M ˚ (X q  – mW e ))
                          w
                              ˚
           ˚
                                 ˚
               ˚
                          ˚
         + M    ((X q  – mW e )(m – Z ˚ ) + X w˚ (Z q  + mU e ))
                          w
          ˚
                                      ˚
                      ˚
                   ˚
            ˚
               ˚
      c   X    (Z w M q  – (M w  (Z q  + mU e ) + mg sin   e  M w˚ )
              ˚
           ˚
                          ˚
                            ˚
                 ˚
                                       ˚
         + Z    (M w  (X q  – mW e ) – X M q  – mg cos  e M w˚ )
                           w
           ˚
                          ˚
                 ˚
                             ˚
              ˚
         + M    (X w  (Z q  + mU e ) – Z w  (X q  – mW e ) – mg cos  (m
                                           e
           ˚
                      ˚
         – Z ˚ ) – mg sin   e X w˚ )
           w
                      ˚
                         ˚
          ˚  ˚
                                   ˚
                                      ˚
      d   X    M w  mg sin   – Z    M mg cos  + M    (Z mg cos
                    e
                          w
                                       w
                                e
            ˚
           e  – X w  mg sin   e )
   298   299   300   301   302   303   304   305   306   307   308