Page 304 - Aeronautical Engineer Data Book
P. 304

246     Aeronautical Engineer’s Data Book
      Table A2.2 Lateral-directional response transfer functions
      in terms of dimensional derivatives

        is aileron input
                                        2
                                4
                                    3
      Demoninator polynomial ∆(s) = s(as + bs + cs + ds + e)
                2
      a   m(I x I z  – I xz )
                                            ˚
                                      ˚
                         ˚
           ˚
                               ˚
                  2
      b  –Y v  (I x I z  – I xz ) – m(I x  N r  + I xz  L r ) – m(I z  L p  + I xz  N p )
                                      ˚
              ˚
                                  ˚
          ˚
                            ˚
                        ˚
                    ˚
      c   Y v  (I x  N r  + I xz  L r ) + Y (I L p  + I xz  N p ) – (Y + mW e )(I
 z
                        v  z           p
          ˚
                ˚
         L v  + I xz  N v )
                           ˚
                                      ˚  ˚
                     ˚
            ˚
                                 ˚  ˚
         – (Y – mU e )(I x  N v  + I xz  L v ) + m(L p N r – L r N p )
            r
                    ˚  ˚
                           ˚
                                   ˚  ˚
               ˚  ˚
                                        ˚  ˚
            ˚
      d  	 –  (Y (L N – L p N r ) + (Y p  + mW e )(L v N r  – L r N v )
            v	  r  p
           ˚
                        ˚  ˚
                  ˚  ˚
         (Y – mU e )(L p N v  – L v N p )
           r
                                      ˚
                                            ˚
                          ˚
                    ˚
         – mg cos  e  (I z  L v  + I xz  N v ) – mg sin  e  (I x  N v  + I xz  L v )
                 ˚  ˚
                       ˚  ˚
                                         ˚  ˚
                                    ˚  ˚
      e   mg cos  e  (L v N r  – L r N v ) + mg sin  e  (L p N v  – L v N p )
                                   2
                        v
                                3
      Numerator polynomial N    (s) = s(as + bs + cs + d)
          ˚
                 2
      a   Y    (I x I z  – I xz )
                                     ˚
                                 ˚
          ˚
                          ˚  ˚
               ˚
                    ˚
      b   Y    (–I x  N r  – I z  L p  – I xz  (L r N p )) + L    (I z (Y + mW e ) +
                                      p
             ˚
         I xz  (Y r  – mU e ))
                           ˚
           ˚
                ˚
         + N    (I x (Y – mU e ) + I xz  (Y p  + mW e ))
                r
          ˚
             ˚  ˚
                  ˚  ˚
      c   Y    (L p N r  – L r N p )
           ˚
                 ˚
              ˚
                            ˚
                          ˚
         + L    (N p  (Y – mU e ) – N (Y p  + mW e ) + mg(I z  cos  +
                                            e
                          r
                 r
         I xz  sin  e ))
           ˚
                             ˚
                          ˚
                 ˚
              ˚
         + N    (L r  (Y p  – mW e ) – L p  (Y + mU e ) + mg(I sin  e  +
                             r
                                        x
         I xz  cos  e ))
          ˚
             ˚
      d	  L    (N p  mg sin  – N r  mg cos  e ) + N  (L mg cos  – L p e	  ˚   ˚  ˚  r  e   ˚
         mg cos  e )
   299   300   301   302   303   304   305   306   307   308   309