Page 41 - Aeronautical Engineer Data Book
P. 41

28      Aeronautical Engineer’s Data Book
      If x + iy = a + ib then x = a and y = b
        (a + ib) + (c + id) = (a + c) = i(b + d)
        (a + ib) – (c + id) = (a – c) = i(b + d)
        (a + ib)(c + id) = (ac – bd) + i(ad + bc)
         a + ib   ac + bd   bc –ad
        33 = 33 + i 33
                            2
                  2
         c+ id   c  + d 2  c + d  2
      Every complex number may be written in polar
      form. Thus
        x + iy = r(cos  + i sin  ) = r
      r  is called the modulus of  z  and this may be
      written r = |z|
        r = � ��   2
               2
              x
                  y
                +
        is called the argument and this may be written
        = arg z
               y
        tan   = 33
               x
      If z = r (cos  + i sin   ) and z = r (cos  + i
          1
                           1
                                      2
                                  2
                                            2
                   1
      sin   )
          2
        z z = r r [cos(  +   ) + i sin(  +   )]
                                    1
               1 2
                       1
                                        2
                           2
         1 2
                r  (  +   )
            = r 1 2  1  2
                [cos(  –   ) + i sin(  +   )]
              r 1    1   2        1   2
        z \z = 3333
         1
            2
                           r 2
              r 1
            = 33   (  –   )
                        2
                    1
              r 2
      2.8.6 Standard series
      Binomial series         n(n – 1)
              n
                   n
        (a + x) =  a + na n–1   x + 3   n–2   x 2
                                  3 a
                                 2!
                    n(n –1)(n –2)
                                   n
                                  a
                  + 33  –3 x           3
                          3!
                        2
                            2
                  + ... (x < a )
      The number of terms becomes inifinite when n
      is negative or fractional.
   36   37   38   39   40   41   42   43   44   45   46