Page 45 - Aeronautical Engineer Data Book
P. 45

32      Aeronautical Engineer’s Data Book

         d            d  u   d   1      n   du
              n
                                3
                                           3
        3 3 (u ) = nu n–1  3  3,
  3 3 �
 �
  3 3 3
                                 3 = –
         d  x         dx    d  x   u  n   u  n+1  d x
         d u    dx     dx
        3 3  = 1 3  , 3  if  3 ≠ 0
                      3
         dx    / u     d u
                d
         d             d u
        3 3 f (u) = f’(u)  3
                      3
         d  x          dx
         d   x
        3 3  � f(t)dt = f(x)
         d  x  a
         d   b
        3 3  � f(t)dt = – f(x)
         d  x  x
             b
         d  � f(x, t)dt = � b   ∂  f
        3 3               33 dt
         d  x   a       a  ∂x
             v
         d   � f(x, t)dt = � u   ∂ f    d  v
        3 3               33 dt + f (x, v)  3  3
         d  x   u       v  ∂ x          d  x
                               d  u
                       – f (x, u)  3 3
                               d  x
      Higher derivatives
                                  �
                                       2
                            d   d y   d  y
        Second derivatives = 33  � 3 3 =  3  3
                           d  x   d  x   dx 2
                         = f"(x) = y"
                                    2
                        d u
         d  2          � � 2       d u
        33 f(u) = f "(u)  3 3  + f'(u)  3  3
           2
                                     2
         d x            d  x       dx
      Derivatives of exponentials and logarithms
         d
                   n
        3 3  (ax + b) = na(ax + b) n–1
         d  x
         d
        3 3 e = ae ax
             ax
         d  x
         d         1
                  3
        3 3 ln ax = 3,  ax > 0
         d  x      x
   40   41   42   43   44   45   46   47   48   49   50