Page 47 - Aeronautical Engineer Data Book
P. 47

34      Aeronautical Engineer’s Data Book
      Partial derivatives  Let f(x, y) be a function of
      the two variables x and y. The partial deriva­
      tive of f with respect to x, keeping y constant is:
         ∂ f     f (x + h, y) – f (x, y)
        3 = lim 333
          3
         ∂x  h→0          h
      Similarly the partial derivative of f with respect
      to y, keeping x constant, is
         ∂
f     f (x, y + k) – f (x, y)
        3 3	= lim 333
         ∂y  k→0          k
      Chain rule for partial derivatives  To change
      variables from (x, y) to (u, v) where u = u(x, y),
      v = v(x, y), both x = x(u, v) and y(u, v) exist and
      f(x, y) = f [x(u, v), y(u, v)] = F(u, v).
         ∂  F   ∂x   ∂  f   ∂y  ∂  f   ∂ F  ∂ x  ∂f   ∂ y   ∂f
        3 3 = 33
3 + 3 3 3,  3  3 = 
 3 333 +
 3  333
                      3
                 3
         ∂	 u   ∂u  ∂x   ∂u  ∂y   ∂  v   ∂v  ∂v   ∂v  ∂y
         ∂  f   ∂ u  ∂ F   ∂	v  ∂	F   ∂  f   ∂ u  ∂ F   ∂	v  ∂	F
        33 =  3  3 3 +  3 3  3 3,   33 =  3  3 3 +  3 3  3 3
                3
                                     3


                                     ∂
                ∂
         ∂x   ∂ x  u
  ∂ x  ∂  v   ∂y   ∂ y  u
  ∂ y  ∂  v
      2.8.9 Integration
      f(x)           F(x) = ∫f(x)dx
                      x  a+1
      x a            3 3,   a ≠ –1
                     a +  1
      x –1           ln | x |
                     e  kx
      e kx           3  3
                      k
                      a x
      a x            3 3,   a > 0,  a ≠ 1
                     ln  a
      ln x           x ln x – x
      sin x          –cos x
      cos x          sin x
      tan x          ln | sec x |
      cot x          ln | sin x |
      sec x          ln | sec x + tan x |
                                   1
                             1
                     = ln | tan  (x +  π)|
                             33
                                  3 3
                                   2
                             2
   42   43   44   45   46   47   48   49   50   51   52