Page 190 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 190

6.4 Cyclone                                                     165

            6.4.1.1 Crawford Model
            Crawford [6] derived a formula by applying fluid dynamics to the air phase, which
            leads to

                                                Q     1
                                   v h ¼ u h ¼                           ð6:46Þ
                                            H ln r 2 =r 1 Þ r
                                                ð
              Substituting Eq. (6.46) into (6.45) leads to

                                      q d 2     Q     2  1
                                       p p
                                  v r ¼                3                 ð6:47Þ
                                       18l H ln r 2 =r 1 Þ r
                                               ð
              Over an infinitesimal period of time, dt, the particle moves outward along radial
            direction a distance of dr ¼ v r dt and an arc length along the tangential direction,
            rdh ¼ v h dt. For the same dt

                                           dr   rdh
                                       dt ¼   ¼                          ð6:48Þ
                                            v r  v h
              It leads to

                                          dr   v r
                                             ¼                           ð6:49Þ
                                         rdh   v h
              Substituting Eqs. (6.46) and (6.45) into (6.49) leads to


                                    rdr  q d 2   Q
                                          p p
                                       ¼                                 ð6:50Þ
                                    dh   18l H ln r 2 =r 1 Þ
                                                 ð
            where the right-hand side of this equation is constant for fixed particle size and
            cyclone configuration. For a particle entering the cyclone at r ¼ r c when h ¼ 0, its
            radial position in the cyclone is defined by

                                         "   2         #
                                          q d     Q
                                  2   2    p p
                                 r   r ¼                h                ð6:51Þ
                                      c
                                           9l Hln r 2 =r 1 Þ
                                                 ð
              When the particle reaches the collecting wall, r ¼ r 2 , and the corresponding
            angle h 2 is determined by
                                        "    2         #
                                          q d     Q
                                 2   2     p p
                                r   r ¼                 h 2              ð6:52Þ
                                 2   c
                                          9l H ln r 2 =r 1 Þ
                                                 ð
   185   186   187   188   189   190   191   192   193   194   195