Page 412 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 412
References and Further Readings 391
4. Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO 2 ,CH 2 ,C 2 H 6 ,C 2 H 4 ,O 2 and N 2
in 1-hexyl-3-methylpyridinium bis (trifluoromethylsulfonyl)imide: comparison to other ionic
liquids. Acc Chem Res 40:1208–1216
5. Anderson DM, Mauk EM, Wahl ER, Morrill1 C, Wagner AJ, Easterling D, Rutishauser T
(2013) Global warming in an independent record of the past 130 years. Geophys Res Lett 40
(1):189–193
6. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in
ionic liquids. J Phys Chem B 109:6366–6374
7. Aspelund A, Mølnvik MJ, de Koeijer G (2006) Ship transport of CO 2 technical solutions and
analysis of costs, energy utilization, exergy efficiency and CO 2 emissions. Chem Eng Res Des
84(A9):847–855
8. Bidwe AR, Mayer F, Hawthorne C, Charitos A, Schuster A, Schenecht G (2011) Use of
ilmenite as an oxygen carrier in chemical looping combustion-batch and continuous dual
fluidized bed investigation. Energy Procedia 4:433–440
9. Boot-Handford ME et al (2014) Carbon capture and storage update. Energy Environ Sci
7:130–189
10. Brown RC (2003) Biorenewable resources, engineering new products from agriculture.
Blackwell Publishing, Iowa State Press, Boston
11. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO 2
so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:5300–5308
12. Carvalho PJ, Coutinho JAP (2010) On the nonideality of CO 2 solutions in ionic liquids and
other low volatile solvents. J Phys Chem Lett 1:774–780
13. Chadwick RA, Zweigel P, Gregersen U, Kirby GA, Holloway S, Johannessen PN (2004)
Geological reservoir characterization of a CO 2 storage site: the Utsira Sand, Sleipner, northern
North Sea. Energy 29:1371–1381
14. Colebrook CF (1939) Turbulent flow in pipes, with particular reference to the transition region
between smooth and rough pipe laws. J Inst Civil Eng 11(4):133–156
15. Cuadrat A, Abad A, Garcıa-Labiano F, Gayan P, de Diego LF, Adanez J (2012) Effect of
operating conditions in chemical-looping combustion of coal in a 500 Wth unit. Int J
Greenhouse Gas Control 6:153–163
16. Danckwerts PV (1979) The reaction of CO 2 with ethanolamines. Chem Eng Sci 34:443–446
17. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new
materials. Angew Chem Int Ed 49(35):6058–6082. doi:10.1002/anie.201000431
18. DOE-NETL (2011) Research and development goals for CO 2 capture technology; Pittsburgh,
PA, DOE/NETL-2009/1366
19. DOE-NETL (2012) Techno-economic analysis of CO 2 capture-ready coal-fired power plants,
DOE/NETL-2012/1581
20. de Nevers N (2000) Air pollution control engineering. The McGraw-Hill Companies, Inc,
New York
21. EIA (Energy Information Administration) (2007) International Energy Outlook (IEO), May
2007
22. EIA (2014) EIA.doe.gov. http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html. Accessed 17
June 2014
23. Freeman S, Davis J, Rochelle GT (2010) Degradation of aqueous piperazine in carbon dioxide
capture. Int J Greenhouse Gas Control 4:756–761
24. Grande CA (2012) Advances in pressure swing adsorption for gas separation. ISRN Chem
Eng 2012, Article ID 982934. doi:10.5402/2012/982934
25. Glilgen R, Klenrahm R, Wagner W (1992) Supplementary measurements of the (pressure,
density, temperature) relation of carbon dioxide in the homogeneous region at temperatures
from 220 K to 360 K and pressures up to 13 MPa. J Chem Thermodyn 24:1243–1250
26. Houghton JT et al (eds) (1996) Climate change 1995: the science of climate change, IPCC.
Cambridge University Press, Cambridge
27. Houghton J (1997) Global warming: the complete briefing, 2nd edn. Cambridge University
Press, Cambridge

