Page 413 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 413
392 12 Carbon Capture and Storage
28. Houghton JT, Jenkins GJ, Ephramus JJ (eds) (1990) Climate change: the IPCC science
assessment. Cambridge University Press, Cambridge
29. Houghton RA, Woodwell GM (1989) Global climate change. Sci Am 260(4):36–44
30. IPCC (The Intergovernmental Panel on Climate Change) (2005) Carbon capture and
sequestration report
31. IPCC (2007) Changes in atmospheric constituents and in radiative forcing of the 2007. IPCC
Fourth Assessment Report (AR4) by Working Group 1 (WG1). http://www.ipcc.ch/pdf/
assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
32. IPCC (2013) Climate change 2013. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K,
Tignor MMB, Miller HL Jr, Chen Z (eds) The physical science basis. Cambridge University
Press, New York
33. Ishida M, Zheng D, Akehat T (1987) Evaluation of a chemical-looping-combustion power-
generation system by graphic exergy analysis. Energy 12(2):147–154
34. Jerndal E, Mattisson T, Lyngfelt A (2006) Thermal analysis of chemical-looping combustion.
Chem Eng Res Des 84:795–806
35. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC (2013) Comparison of carbon dioxide
absorption in aqueous MEA, DEA, TEA, and AMP solutions. Bull Korean Chem Soc 34
(3):783–787
36. Ko J, Li M (2000) Kinetics of absorption of carbon dioxide into solutions of N-
methyldiethanolamine + water. Chem Eng Sci 55:4139–4147
37. Krooss BM, van Bergen F, Gensterblum Y, Siemons N, Pagnier HJM, David P (2002) High-
pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated
Pennsylvanian coals. Int J Coal Geol 51:69–92
38. Lewis WK, Gilliland ER (1954) US Pat., No. 2,665,972
39. Li K, Yu H, Tade M, Feron P, Yu J, Wang S (2014) Process modeling of an advanced NH 3
abatement and recycling technology in the ammonia-based CO 2 capture process. Environ Sci
Technol 48(12):7179–7186
40. Li J, Henni A, Tontiwachwuthikul P (2007) Reaction kinetics of CO 2 in aqueous
ethylenediamine, ethyl ethanolamine, and diethyl monoethanolamine solutions in the
temperature range of 298–313 K, using the stopped-flow technique. Ind Eng Chem Res
46:4426–4434
41. Li L, Li H, Namjoshi O, Du Y, Rochelle GT (2013) Absorption rates and CO 2 solubility in
new piperazine blends. Energy Procedia 37:370–385
42. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Progress in adsorption-based
CO 2 capture by metal–organic frameworks. Chem Soc Rev 41:2308–2322
43. Liu Y, Wang Z, Zhou H (2012) Recent advances in carbon dioxide capture with metal-organic
frameworks. Greenhouse Gas Sci Technol 2:239–259
44. Ma’mun S, Dindore VY, Svendsen HF (2007) Kinetics of the reaction of carbon dioxide with
aqueous solutions of 2-((2-aminoethyl)amino)ethanol. Ind Eng Chem Res 46:385–394
45. Mattisson T, Lyngfelt A, Leion H (2009) Chemical-looping oxygen uncoupling for
combustion of solid fuels. Int J Greenhouse Gas Control 3:11–19
46. Nakayama S, Noguchi Y, Kiga T, Miyamae S, Maeda U, Kawai M, Tanaka T, Koyata K,
Makino H (1992) Pulverized coal combustion in O 2 /CO 2 mixtures on a power plant for CO 2
recovery. Energy Convers Manage 33(5–8):379–386
47. Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London, p 14
48. Pirngruber GD, Leinekugel-le-Cocq D (2013) Design of a pressure swing adsorption process
for postcombustion CO 2 capture. Ind Eng Chem Res 52:5985–5996
49. Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO 2 capture with ionic liquids.
Ind Eng Chem Res 51:8149–8177
50. Ryden M, Lyngfelt A, Mattisson T (2011) CaMn 0.875 Ti 0.125 O 3 as oxygen carrier for chemical-
looping combustion with oxygen uncoupling (CLOU)—experiments in a continuously
operating fluidized-bed reactor system. Int J Greenhouse Gas Control 5:356–366

