Page 70 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 70

44                                            2  Basic Properties of Gases

            Table 2.2 Sutherland’s constants and reference temperatures
            Gas                Formula     T s (K)   T 0 (K)    l 0 (10 −6  Pa s)
            Hydrogen           H 2         72        293.85      8.76
            Nitrogen           N 2         111       300.55     17.81
            Oxygen             O 2         127       292.25     20.18
            Air                –           120       291.15     18.27
            Carbon dioxide     CO 2        240       293.15     14.8
            Carbon monoxide    CO          118       288.15     17.2
            Ammonia            NH 3        370       293.15      9.82
            Sulfur dioxide     SO 2        416       293.65     12.54

            where m is the mass of a single molecule. C N is the molecule number concentration.
                     1
            The term  C N m  c stands for the average mass flow rate per unit area through plane
                    6
            x. This leads to a net flux of momentum in the þx direction through the plane x as
                                           1      ou
                                     M x ¼  C N m  c  k                  ð2:66Þ
                                           3      ox
              Comparing with the definition of shear stress

                                               ou
                                         s ¼ l                           ð2:67Þ
                                               ox
            we can get the kinetic viscosity of the gas as

                                        1         1
                                    l ¼ C N m  ck ¼ q  ck                ð2:68Þ
                                        3         3
              Combining this equation with Eqs. (2.7) and (2.51), we can get
                                                       p
                                    r ffiffiffiffiffiffiffiffi          ffiffiffiffiffiffiffiffiffi
                                  1   8kT    RT      2 mkT
                              l ¼ q       p ffiffiffi    ¼                     ð2:69Þ
                                                        1:5 2
                                                 2
                                  3    pm  2pN a d P  3 p d
                                                2
            where l ¼ kinetic viscosity in Pa s or N s/m .
              The effect of temperature on the dynamic viscosity of an ideal gas can also be
            calculated using the Sutherland’s equation (Licht and Stechert 1944 cited by [12]).
                                    l    T 0 þ T s     3=2
                                                 T
                                      ¼                                  ð2:70Þ
                                    l
                                     0   T þ T s  T 0
            where l ¼ viscosity in Pa.s at input temperature T, l ¼ reference viscosity at
                                                         0
            reference temperature T 0 , T ¼ input temperature, T 0 ¼ reference temperature, T s ¼
            Sutherland’s constant. Values of Sutherland’s constant T s are taken from Crane [4].
   65   66   67   68   69   70   71   72   73   74   75